Skip to main content

Selection Methods for Geodata Visualization of Metadata Extracted from Unstructured Digital Data for Scientific Heritage Studies

  • Conference paper
  • First Online:
Digital Transformation and Global Society (DTGS 2019)

Abstract

The present study explores the methods of geodata visualization extracted from the metadata of scientific publications for use in scientific research using the scientific heritage of Georgy Gause. It is based on the results of case studies to assess the possibilities of digital information resources, metadata extraction from digital resources, and using methods for their quantitative processing. We have studied methods of extracting metadata from digital information systems that do not have export tools. Our concentration is on methods and technologies of geodata extraction, and their subsequent visualization are considered. They are considered and applied methods of a dynamic clustering of geodata markers. Based on geodata visualization, we interpreter the results. The possibility of using extracted metadata in scientific visualization systems that support standard formats is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agafonkin, V.: Clustering millions of points on a map with Supercluster. Mapbox (2016). https://www.mapbox.com/blog/supercluster/

  2. Amirkhanyan, A., Meinel, C.: Visualization and analysis of public social geodata to provide situational awareness. In: Eighth International Conference on Advanced Computational Intelligence (ICACI), Chiang Mai, pp. 68–73 (2016). https://doi.org/10.1109/icaci.2016.7449805

  3. Antoniou, V., Skopeliti, A.: Measures and indicators of VGI quality: an overview. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-3/W5 (2015)

    Article  Google Scholar 

  4. Araujo, M., Mejova, Y., Aupetit, M., Weber, I.: Visualizing geo-demographic urban data. In: Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW 2018), pp. 45–48. ACM, New York (2018). https://doi.org/10.1145/3272973.3273001

  5. Barnett, J.: Other ways to install drupal. In: Drupal 8 for Absolute Beginners, pp. 321–330. Apress, Berkeley (2015). https://doi.org/10.1007/978-1-4302-6467-5_19

    Chapter  Google Scholar 

  6. Bartoszewski, D., Piorkowski, A., Lupa, M.: The comparison of processing efficiency of spatial data for PostGIS and MongoDB databases. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2019. CCIS, vol. 1018, pp. 291–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19093-4_22

    Chapter  Google Scholar 

  7. Belim, S.V., Brechka, D.M., Gorbunova, T.A., Larionov, I.B., Schmidt, I.V.: Intellectual geographic information system of archaeological objects. Math. Struct. Model. 39, 119–126 (2016). http://msm.omsu.ru/jrns/jrn39/BelimLarionovBrechka.pdf. (in Russian)

  8. Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., Schaub, T.: The geojson format (No. RFC 7946) (2016)

    Google Scholar 

  9. Camara, J.H.S., Vegi, L.F.M., Pereira, R.O., Geöcze, Z.A., Lisboa-Filho, J.: ClickOnMap: a platform for development of volunteered geographic information systems. In: 12th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2017)

    Google Scholar 

  10. Cluster maps: Dashboards and Visualizations. Splunk Cloud Manuals. Version 7.2.3. Splunk, Inc., San Francisco (2019). https://docs.splunk.com/Documentation/SplunkCloud/7.2.3/Viz/MarkerMap

  11. Corrado, E.M.: Discovery products and the open archives initiative protocol for metadata harvesting. Int. Inf. Libr. Rev. 50(1), 47–53 (2018). https://doi.org/10.1080/10572317.2017.1422905

    Article  Google Scholar 

  12. Crawford, T., Hussain, T.: A comparison of server side scripting technologies. In: Proceedings of the 15th International Conference on Software Engineering Research and Practice, Las Vegas, NV, pp. 69–76 (2017). https://csce.ucmss.com/cr/books/2017/LFS/CSREA2017/SER3291.pdf

  13. Create and style clusters: Mapbox GL JS. https://docs.mapbox.com/mapbox-gl-js/example/cluster/

  14. Dregossi, L.C., Albuquerque, J.P., Santos Rocha, R., Zipf, A.: A framework of quality assessment methods for crowdsourced geographic information: a systematic literature review. In: 14th International Conference on Information Systems for Crisis Response and Management, At Albi, France (2017)

    Google Scholar 

  15. Du, F., Zhu, A.-X., Qi, F.: Interactive visual cluster detection in large geospatial datasets based on dynamic density volume visualization. Geocarto Int. 31(6), 597–611 (2016). https://doi.org/10.1080/10106049.2015.1073364

    Article  Google Scholar 

  16. Estima, J., Painho, M.: Exploratory analysis of OpenStreetMap for land use classification. In: Proceedings of the Second ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information (GEOCROWD 2013), pp. 39–46. ACM, New York (2013)

    Google Scholar 

  17. Force, M.M., Robinson, N.J., Matthews, M., Auld, D.M., Boletta, M.: Research data in journals and repositories in the web of science: developments and recommendations. TCDL Bull. 12(2), 27–30 (2016). https://www.ieee-tcdl.org/Bulletin/v12n1/papers/IEEE-TCDL-DC-2016_paper_3.pdf

  18. Gao, S., Li, L., Li, W., Janowicz, K., Zhang, Y.: Constructing gazetteers from volunteered big geo-data based on Hadoop. Computers. Environ. Urban Syst. 61, 172–186 (2017). https://doi.org/10.1016/j.compenvurbsys.2014.02.004

    Article  Google Scholar 

  19. Garnett, A., Leahey, A., Savard, D., Towell, B., Wilson, K.: Open metadata for research data discovery in Canada. J. Libr. Metadata 17(3–4), 201–217 (2017). https://doi.org/10.1080/19386389.2018.1443698

    Article  Google Scholar 

  20. Hubert, R.B., Maguitman, A.G., Chesñevar, C.I., Malamud, M.A.: CitymisVis: a tool for the visual analysis and exploration of citizen requests and complaints. In: Baguma, R., De’, R., Janowski, T. (eds.) Proceedings of the 10th International Conference on Theory and Practice of Electronic Governance (ICEGOV 2017), pp. 22–25. ACM, New York (2017). https://doi.org/10.1145/3047273.3047320

  21. Jain, R., Bhatt, H., Jeevanand, N., Kumar, P.: Mapping, visualization, and digitization of the geo-referenced information: a case study on road network development in near real time. Int. Res. J. Eng. Technol. 5(9), 845–850 (2018). https://www.irjet.net/archives/V5/i9/IRJET-V5I9153.pdf

  22. Karmatsky, A.: Visualize it. Habr (2015). https://habr.com/ru/post/251755/. (in Russian)

  23. Kim, D., Seo, D., Yoo, B., Ko, H.: Points of interest density based zooming interface for map exploration on smart glass. In: Yamamoto, S. (ed.) HIMI 2017. LNCS, vol. 10273, pp. 208–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58521-5_16

    Chapter  Google Scholar 

  24. Kormann, M., Katsonopoulou, D., Katsarou, S., Lock, G.: Methods for developing 3D visualizations of archaeological data: a case study of the Early Bronze Age Helike Corridor House. Sci. Technol. Archaeol. Res. 3(2), 478–489 (2017). https://doi.org/10.1080/20548923.2017.1372934

    Article  Google Scholar 

  25. Krasnoperov, R.I., Soloviev, A.A., Nikolov, B.P., Zharkikh, J.I., Grudnev, A.A.: Interactive web-application for complex studying of spatial information on Earth sciences from the geodatabase of GC RAS. Geoinf. Res. Pap. 4, BS4015 (2016). https://doi.org/10.2205/2016bs039. (in Russian)

    Article  Google Scholar 

  26. Langley, S.A., Messina, J.P., Moore, N.: Using meta-quality to assess the utility of volunteered geographic information for science. Int. J. Health Geogr. 16(1), 40 (2017)

    Article  Google Scholar 

  27. Li, X., Anselin, L., Koschinsky, J.: GeoDa web: enhancing web-based mapping with spatial analytics. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2015). ACM, New York (2015). Article 94. https://doi.org/10.1145/2820783.2820792

  28. Mapbox developers tools. https://www.mapbox.com/developers/

  29. Medeiros, G., Holanda, M.: Solutions for data quality in GIS and VGI: a systematic literature review. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 930, pp. 645–654. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16181-1_61

    Chapter  Google Scholar 

  30. Mikiewicz, D., Mackiewicz, M., Nycz, T.: Mastering PostGIS: Modern Ways to Create, Analyze, and Implement Spatial Data. Packt Publishing, Birmingham (2017)

    Google Scholar 

  31. Mohammadi, H., Delavar, M.R., Sharifi, M.A., Pirooz, M.D.: Spatiotemporal visualization of Tsunami waves using KML on Google Earth. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 7, 1291–1299 (2017). https://doi.org/10.5194/isprs-archives-xlii-2-w7-1291-2017

    Article  Google Scholar 

  32. Moosavi, V.: Contextual mapping: visualization of high-dimensional spatial patterns in a single geo-map. Comput. Environ. Urban Syst. 61, 1–12 (2017). https://doi.org/10.1016/j.compenvurbsys.2016.08.005

    Article  Google Scholar 

  33. Münster, S., Ioannides, M.: A scientific community of digital heritage in time and space. In: Digital Heritage, Granada, pp. 267–274 (2015). https://doi.org/10.1109/digitalheritage.2015.7419507

  34. Murray, S.: Interactive Data Visualization for the Web: An Introduction to Designing with D3, 2nd edn. O’Reilly Media Inc., Sebastopol (2017)

    Google Scholar 

  35. Nikora, M.T.H., Hunt, T.D., Ryan, G.: CacophonyViz: Visualisation of birdsong derived ecological health indicators. J. Appl. Comput. Inf. Technol. 22(1) (2018). http://citrenz.ac.nz/JACIT/JACIT2201/2018Nikora_CacophonyViz.html

  36. Pons, X., Masó, J.: A comprehensive open package format for preservation and distribution of geospatial data and metadata. Comput. Geosci. 97, 89–97 (2016). https://doi.org/10.1016/j.cageo.2016.09.001

    Article  Google Scholar 

  37. Prabhune, A., Ansari, H., Keshav, A., Stotzka, R., Gertz, M., Hesser, J.: MetaStore: a metadata framework for scientific data repositories. In: 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, pp. 3026–3035 (2016). https://doi.org/10.1109/bigdata.2016.7840956

  38. Prokudin, D., Levit, G., Hossfeld, U.: Selection methods for quantitative processing of digital data for scientific heritage studies. In: Alexandrov, D.A., Boukhanovsky, A.V., Chugunov, A.V., Kabanov, Y., Koltsova, O. (eds.) DTGS 2018. CCIS, vol. 859, pp. 134–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02846-6_11

    Chapter  Google Scholar 

  39. Prokudin, D., Levit, G., Hossfeld, U.: Selection methods of digital information resources for scientific heritage studies: a case study of Georgy F. Gause. In: Bolgov, R.V., Borisov, N.V., Smorgunov, L.V., Tolstikova, I.I., Zakharov, V.P. (eds.) Internet and Modern Society: Proceedings of the International Conference IMS-2017, ACM International Conference Proceeding Series, St. Petersburg, Russian Federation, 21–24 June 2017, pp. 69–74. ACM Press, New York (2017). https://doi.org/10.1145/3143699.3143739

  40. Prokudin, D., Mbogo, I., Murgulets, L., Kudryavtseva, M.: The study approaches for dissemination of research results in the information society. In: Chugunov, A.V., Bolgov, R., Kabanov, Y., Kampis, G., Wimmer, M. (eds.) DTGS 2016. CCIS, vol. 674, pp. 350–362. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49700-6_33

    Chapter  Google Scholar 

  41. Sechelea, A., Huu, T.D., Zimos, E., Deligiannis, N.: Twitter data clustering and visualization. In: 2016 23rd International Conference on Telecommunications (ICT), Thessaloniki, pp. 1–5 (2017). https://doi.org/10.1109/ict.2016.7500379

  42. Sinkonde, D., Mselle, L., Shidende, N., Comai, S., Matteucci, M.: Developing an intelligent PostGIS database to support accessibility tools for urban pedestrians. Urban Sci. 2(3), 52 (2018). https://doi.org/10.3390/urbansci2030052

    Article  Google Scholar 

  43. Skorohod, M.: Clustering markers in Geoserver (2017). https://maks.live/articles/python/klasterizatsiia-markerov-v-geoserver/. (in Russian)

  44. Suleymanov, R.S.: Extraction of metadata from the full-text electronic materials written in Russian using Tomita-parser. Softw. Syst. 4, 58–62 (2016). https://doi.org/10.15827/0236-235x.116.058-062. (in Russian)

    Article  Google Scholar 

  45. Sun, L., He, D., Zhao, P.: A research of publishing map technique based on GeoServer. Asian J. Appl. Sci. 8(3), 185–195 (2015). https://doi.org/10.3923/ajaps.2015.185.195

    Article  Google Scholar 

  46. Thakkar, R.C., Heffernan, I.D.: U.S. patent no. 9,703,807. U.S. Patent and Trademark Office, Washington, DC (2017)

    Google Scholar 

  47. Vasilev, A., Kozlov, D., Samusev, S., Shamina, O.: Izvlechenie metainformacii i bibliograficheskih ssylok iz tekstov russkojazychnyh nauchnyh statej. In: Trudy konferencii RCDL 2007, Pereslavl, vol. 1, pp. 175–181 (2007). (in Russian)

    Google Scholar 

  48. Vicentiy, A.V.: Adaptive visualization of geodata in social media. Naukovedenie 4(35), 1–15 (2016). https://naukovedenie.ru/PDF/57TVN416.pdf. (in Russian)

  49. West, A.W., Prettyman, S.: Create and test a database and table. In: Practical PHP 7, MySQL 8, and MariaDB Website Databases, pp. 1–31. Apress, Berkeley (2018). https://doi.org/10.1007/978-1-4842-3843-1_1

    Chapter  Google Scholar 

  50. Zelianskaia, N.L., Baranov, D.A., Belousov, K.I.: Naive geography and topology of geomental maps. Socio Psycho Linguist. Res. 4, 126–136 (2016). (in Russian)

    Google Scholar 

  51. Zhang, H., Malczewski, J.: Quality evaluation of volunteered geographic information: the case of OpenStreetMap. In: Calazans Campelo, C., Bertolotto, M., Corcoran, P. (eds.) Volunteered Geographic Information and the Future of Geospatial Data, pp. 19–46. IGI Global, Hershey (2017). https://doi.org/10.4018/978-1-5225-2446-5.ch002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Prokudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prokudin, D., Levit, G., Hossfeld, U. (2019). Selection Methods for Geodata Visualization of Metadata Extracted from Unstructured Digital Data for Scientific Heritage Studies. In: Alexandrov, D., Boukhanovsky, A., Chugunov, A., Kabanov, Y., Koltsova, O., Musabirov, I. (eds) Digital Transformation and Global Society. DTGS 2019. Communications in Computer and Information Science, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-37858-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37858-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37857-8

  • Online ISBN: 978-3-030-37858-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics