Skip to main content

Undergraduate Research in Mathematical Epidemiology

  • Chapter
  • First Online:
A Project-Based Guide to Undergraduate Research in Mathematics

Abstract

The spread of diseases remains an important issue in public health. The use of mathematics in predicting and understanding epidemics is not new, but still relevant and useful. In this chapter we provide relevant resources and useful exercises for undergraduate students and their mentors. We describe two different modeling techniques which require different backgrounds. For agent based modeling, we suggest students who are either comfortable with programming or willing to learn and who have basic knowledge of probability. For the differential equation approach, we suggest students who have taken at least Calculus 2. Students with a differential equation background will advance faster and can do a more theoretical analysis of the system. A student who might be willing to spend more time working on this topic can model the same disease outbreak using different modeling techniques which will allow for comparison and much deeper analysis of both the mathematics and the biological and public policy implications. Additionally, we include a sample project, developed and written by an undergraduate student who co-authors this chapter. Finally, we provide four different projects that students and their mentors can work on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. J. Allen, F. Brauer, P. Van den Driessche, and J. Wu. Mathematical epidemiology, volume 1945. Springer, 2008.

    Google Scholar 

  2. M. Andraud, N. Hens, C. Marais, and P. Beutels. Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLoS One, 7(11):e49085, 2012.

    Google Scholar 

  3. J. Arino, J. R. Davis, D. Hartley, R. Jordan, J. M. Miller, and P. Van Den Driessche. A multi-species epidemic model with spatial dynamics. Mathematical Medicine and Biology, 22(2):129–142, 2005.

    Article  MATH  Google Scholar 

  4. J. Arino and P. Van den Driessche. A multi-city epidemic model. Mathematical Population Studies, 10(3):175–193, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Arino and P. Van den Driessche. Disease spread in metapopulations. Fields Institute Communications, 48(1):1–13, 2006.

    MathSciNet  MATH  Google Scholar 

  6. S. Bañuelos, T. Danet, C. Flores, and A. Ramos. An epidemiological math model approach to a political system with three parties. CODEE Journal, 12(1), 2019.

    Google Scholar 

  7. M. J. Berryman and S. D. Angus. Tutorials on agent-based modelling with NetLogo and network analysis with Pajek. World Scientific, 2010.

    Google Scholar 

  8. H. V. Boyett, D. G. Bourne, and B. L. Willis. Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the great barrier reef. Marine Biology, 151(5):1711–1720, 2007.

    Article  Google Scholar 

  9. F. Brauer and C. Castillo-Chavez. Mathematical models in population biology and epidemiology, volume 40. Springer, 2012.

    Google Scholar 

  10. B. Calderhead, M. Girolami, and D. J. Higham. Is it safe to go out yet? Statistical inference in a zombie outbreak model, 2010.

    Google Scholar 

  11. G. Chartrand and P. Zhang. A first course in graph theory. Courier Corporation, 2013.

    Google Scholar 

  12. M. Clauson, A. Harrison, L. Shuman, M. Shillor, and A. Spagnuolo. Analysis of the steady states of a mathematical model for Chagas disease. Involve, A Journal of Mathematics, 5(3):237–246, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Clayton, M. Hills, and A. Pickles. Statistical models in epidemiology, volume 161. Oxford University Press, Oxford, 1993.

    Google Scholar 

  14. M. Dickerson. Multi-agent simulation and NetLogo in the introductory computer science curriculum. Journal of Computing Sciences in Colleges, 27(1):102–104, 2011.

    MathSciNet  Google Scholar 

  15. O. Diekmann, H. Heesterbeek, and T. Britton. Mathematical tools for understanding infectious disease dynamics. Princeton University Press, 2013.

    Google Scholar 

  16. S. P. Ellner, L. E. Jones, L. D. Mydlarz, and C. D. Harvell. Within-host disease ecology in the sea fan Gorgonia ventalina: modeling the spatial immunodynamics of a coral-pathogen interaction. The American Naturalist, 170(6):E143–E161, 2007.

    Article  Google Scholar 

  17. S. M. L. Emily K Kelting, Brittany E Bannish. Toxoplasma gondii: A mathematical model of its transfer between cats and the environment. Siuro, 11, 2018.

    Google Scholar 

  18. Fandom. The walking dead wiki, 2019. https://walkingdead.fandom.com/wiki/Zombies Last accessed on 2019-01-06.

  19. K. R. Fister, H. Gaff, E. Schaefer, G. Buford, and B. Norris. Investigating cholera using an SIR model with age-class structure and optimal control. Involve, A Journal of Mathematics, 9(1):83–100, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Hartsfield and G. Ringel. Pearls in graph theory: a comprehensive introduction. Courier Corporation, 2013.

    Google Scholar 

  21. G. B. Jiechen Chen. Realistic modeling and simulation of influenza transmission over an urban community. Siuro, 8, 2015.

    Google Scholar 

  22. M. J. Keeling and P. Rohani. Modeling infectious diseases in humans and animals. Princeton University Press, 2011.

    Google Scholar 

  23. K. Khan, J. Arino, F. Calderon, A. Chan, M. Gardam, C. Heidebrecht, W. Hu, D. Janes, M. MacDonald, J. Sears, et al. An analysis of Canada’s vulnerability to emerging infectious disease threats via the global airline transportation network. Technical report, 2011.

    Google Scholar 

  24. K. Khan, J. Arino, W. Hu, P. Raposo, J. Sears, F. Calderon, C. Heidebrecht, M. Macdonald, J. Liauw, A. Chan, et al. Spread of a novel influenza a (H1N1) virus via global airline transportation. New England Journal of Medicine, 361(2):212–214, 2009.

    Article  Google Scholar 

  25. S. Levin, T. Powell, and J. Steele. Patch dynamics (lecture notes in biomathematics 96), 1993.

    Google Scholar 

  26. R. L. Lineberry and I. Sharkansky. Urban politics and public policy. Harper & Row New York, 1978.

    Google Scholar 

  27. S. Mandal, R. R. Sarkar, and S. Sinha. Mathematical models of malaria-a review. Malaria Journal, 10(1):202, 2011.

    Google Scholar 

  28. P. Manfredi and A. D’Onofrio. Modeling the interplay between human behavior and the spread of infectious diseases. Springer Science & Business Media, 2013.

    Google Scholar 

  29. J. Mao-Jones, K. B. Ritchie, L. E. Jones, and S. P. Ellner. How microbial community composition regulates coral disease development. PLoS Biology, 8(3):1000345, 2010.

    Google Scholar 

  30. R. Margevicius and H. Joshi. The influence of education in reducing the HIV epidemic. Involve, A Journal of Mathematics, 6(2):127–135, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Martin, M. Sauer, E. Olawsky, and M. Marinello. Stochastic models for HIV transmission as a vector-host disease. Minnesota Journal of Undergraduate Mathematics, 2(1), 2017.

    Google Scholar 

  32. D. Maxin, T. Olson, and A. Shull. Vertical transmission in epidemic models of sexually transmitted diseases with isolation from reproduction. Involve, a Journal of Mathematics, 4(1):13–26, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. K. Misra. A simple mathematical model for the spread of two political parties. Nonlinear Analysis: Modelling and Control, 17(3):343–354, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Munz, I. Hudea, J. Imad, and R. J. Smith. When zombies attack!: mathematical modelling of an outbreak of zombie infection. Infectious Disease Modelling Research Progress, 4:133–150, 2009.

    Google Scholar 

  35. S. P. Otto and T. Day. A biologist’s guide to mathematical modeling in ecology and evolution. Princeton University Press, 2011.

    Google Scholar 

  36. C. Ray and M. Hoopes. Metapopulation biology: ecology, genetics, and evolution. Ecology, 78(7):2270–2272, 1997.

    Google Scholar 

  37. R. C. Reiner Jr, T. A. Perkins, C. M. Barker, T. Niu, L. F. Chaves, A. M. Ellis, D. B. George, A. Le Menach, J. R. Pulliam, D. Bisanzio, et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. Journal of The Royal Society Interface, 10(81):20120921, 2013.

    Google Scholar 

  38. D. Smith and L. Moore. the SIR model for spread of disease - introduction. JOMA, Convergence, 2004.

    Google Scholar 

  39. The Political Compass. Political compass, 2019. https://www.politicalcompass.org/.

  40. The Walking Dead Website. The walking dead comic book series official website, 2019. https://www.skybound.com/the-walking-dead/walking-dead-comics-story/ Last accessed on 2019-01-06.

  41. United State Census Bureau. New census data show differences between urban and rural populations, 2016. https://www.census.gov/newsroom/press-releases/2016/cb16-210.html.

  42. D. B. West et al. Introduction to graph theory, volume 2. Prentice Hall Upper Saddle River, 2001.

    Google Scholar 

  43. Wikipedia. Coral reef, 2019. https://en.wikipedia.org/wiki/Coral_reef Last accessed on 2019-01-06.

  44. U. Wilensky. Netlogo, 1999.

    Google Scholar 

  45. C. Witkowski and B. Blais. Bayesian analysis of epidemics-zombies, influenza, and other diseases. arXiv preprint arXiv:1311.6376, 2013.

    Google Scholar 

  46. J. Woo and H. Chen. Epidemic model for information diffusion in web forums: experiments in marketing exchange and political dialog. SpringerPlus, 5(1):66, 2016.

    Google Scholar 

  47. K. Yokley, J. T. Lee, A. Brown, M. Minor, and G. Mader. A simple agent-based model of malaria transmission investigating intervention methods and acquired immunity. Involve, A Journal of Mathematics, 7(1):15–40, 2013.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Office of Research at Youngstown State University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Prieto-Langarica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bañuelos, S., Bush, M., Martinez, M.V., Prieto-Langarica, A. (2020). Undergraduate Research in Mathematical Epidemiology. In: Harris, P., Insko, E., Wootton, A. (eds) A Project-Based Guide to Undergraduate Research in Mathematics. Foundations for Undergraduate Research in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-37853-0_11

Download citation

Publish with us

Policies and ethics