Skip to main content

Exploring Defects in Semiconductor Materials Through Constant Fermi Level Ab-Initio Molecular Dynamics

  • Chapter
  • First Online:
Theory and Simulation in Physics for Materials Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 296))

  • 732 Accesses

Abstract

We focus on the determination of point defects in semiconductor materials through constant-Fermi-level ab initio molecular dynamics and demonstrate that this technique can be used as a computer-based tool to reveal and control relevant defects in semiconductor materials. In this scheme, the Fermi level can be set at any position within the band gap during the defect generation process, in analogy to experimental growth conditions in the presence of extra electrons or holes. First, the scheme is illustrated in the case of GaAs, for which we generate melt-quenched amorphous structures through molecular dynamics at various Fermi levels. By a combined analysis that involves both the atomic structure and a Wannier-function decomposition of the electronic structure, we achieve a detailed description of the generated defects as a function of Fermi level. This leads to the identification of As–As homopolar bonds and Ga dangling bonds for Fermi levels set in the vicinity of the valence band. These defects convert into As dangling bonds and Ga–Ga homopolar bonds, as the Fermi level moves toward the conduction band. Second, we investigate defects at the InGaAs/oxide interface upon inversion. We adopt a substoichiometric amorphous model for modelling the structure at the interface and investigate the formation of defect structures upon setting the Fermi-level above the conduction band minimum. Our scheme reveals the occurrence of In and Ga lone-pair defects and As–As dimer/dangling bond defects, in agreement with previous studies based on physical intuition. In addition, the present simulation reveals hitherto unidentified defect structures consisting of metallic In–In, In–Ga, and Ga–Ga bonds. The defect charge transition levels of such metallic bonds in Al\(_2\)O\(_3\) are then determined through a hybrid functional scheme and found to be consistent with the defect density measured at InGaAs/Al\(_2\)O\(_3\) interfaces. Hence, we conclude that both In and Ga lone pairs and metallic In–In bonds are valid candidate defects for charge trapping at InGaAs/oxide interfaces upon charge carrier inversion. These two studies demonstrate the effectiveness of constant-Fermi-level ab initio molecular dynamics in revealing and identifying semiconductor defects in an unbiased way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.A. Gargini, IEEE Circuits Devices Mag. 18(2), 13 (2002)

    Article  Google Scholar 

  2. J.A. Carballo, W.T.J. Chan, P.A. Gargini, A.B. Kahng, S. Nath, in 2014 32nd IEEE International Conference on Computer Design (ICCD) (IEEE, 2014), pp. 139–146

    Google Scholar 

  3. L. Xia, J.B. Boos, B.R. Bennett, M.G. Ancona, J.A. del Alamo, Appl. Phys. Lett. 98(5), 053505 (2011)

    Article  CAS  Google Scholar 

  4. Y. Xuan, Y.Q. Wu, P.D. Ye, IEEE Electron Device Lett. 29(4), 294 (2008). https://doi.org/10.1109/LED.2008.917817

    Article  CAS  Google Scholar 

  5. K. Rajagopalan, J. Abrokwah, R. Droopad, M. Passlack, IEEE Electron Device Lett. 27(12), 959 (2006). https://doi.org/10.1109/LED.2006.886319

    Article  CAS  Google Scholar 

  6. K. Rajagopalan, R. Droopad, J. Abrokwah, P. Zurcher, P. Fejes, M. Passlack, IEEE Electron Device Lett. 28(2), 100 (2007). https://doi.org/10.1109/LED.2006.889502

    Article  CAS  Google Scholar 

  7. Y. Sun, E.W. Kiewra, S.J. Koester, N. Ruiz, A. Callegari, K.E. Fogel, D.K. Sadana, J. Fompeyrine, D.J. Webb, J.P. Locquet, M. Sousa, R. Germann, K.T. Shiu, S.R. Forrest, IEEE Electron Device Lett. 28(6), 473 (2007). https://doi.org/10.1109/LED.2007.896813

    Article  CAS  Google Scholar 

  8. M. Hong, J. Kwo, A. Kortan, J. Mannaerts, A. Sergent, Science 283(5409), 1897 (1999)

    Article  CAS  Google Scholar 

  9. G. Brammertz, H.C. Lin, K. Martens, D. Mercier, S. Sioncke, A. Delabie, W.E. Wang, M. Caymax, M. Meuris, M. Heyns, Appl. Phys. Lett. 93(18), 183504 (2008)

    Article  CAS  Google Scholar 

  10. N. Bonnet, T. Morishita, O. Sugino, M. Otani, Phys. Rev. Lett. 109(26), 266101 (2012)

    Article  CAS  Google Scholar 

  11. A. Bouzid, A. Pasquarello, J. Chem. Theory Comput. 13(4), 1769 (2017)

    Article  CAS  Google Scholar 

  12. A. Bouzid, A. Pasquarello, J. Phys. Cond. Matt. 29(50), 505702 (2017)

    Article  Google Scholar 

  13. A. Bouzid, A. Pasquarello, Phys. Rev. Appl. 8, 014010 (2017)

    Article  Google Scholar 

  14. I. Thayne, R. Hill, M. Holland, X. Li, H. Zhou, D. Macintyre, S. Thoms, K. Kalna, C. Stanley, A. Asenov et al., ECS Trans. 19(5), 275 (2009)

    Article  CAS  Google Scholar 

  15. E. O’reilly, J. Robertson, Phys. Rev. B 34(12), 8684 (1986)

    Article  Google Scholar 

  16. L. Lin, J. Robertson, Appl. Phys. Lett. 98(8), 082903 (2011)

    Article  CAS  Google Scholar 

  17. J.A. Del Alamo, Nature 479(7373), 317 (2011)

    Article  CAS  Google Scholar 

  18. M. Passlack, P. Zurcher, K. Rajagopalan, R. Droopad, J. Abrokwah, M. Tutt, Y.B. Park, E. Johnson, O. Hartin, A. Zlotnicka et al., in IEEE International Electron Devices Meeting, 2007. IEDM 2007 (IEEE, 2007), pp. 621–624

    Google Scholar 

  19. J. Wiley, Semiconductors Semimetals 10, 91 (1975)

    Article  CAS  Google Scholar 

  20. A. Vais, J. Franco, H.C. Lin, N. Collaert, A. Mocuta, K.D. Meyer, A. Thean, Appl. Phys. Lett. 107(22), 223504 (2015). https://doi.org/10.1063/1.4936991

    Article  CAS  Google Scholar 

  21. J. Franco, A. Alian, B. Kaczer, D. Lin, T. Ivanov, A. Pourghaderi, K. Martens, Y. Mols, D. Zhou, N. Waldron et al., in 2014 IEEE International Reliability Physics Symposium (IEEE, 2014), pp. 6A–2

    Google Scholar 

  22. J. Robertson, Appl. Phys. Lett. 94(15), 152104 (2009)

    Article  CAS  Google Scholar 

  23. M. Caymax, G. Brammertz, A. Delabie, S. Sioncke, D. Lin, M. Scarrozza, G. Pourtois, W.E. Wang, M. Meuris, M. Heyns, Microelectron. Eng. 86(7), 1529 (2009)

    Article  CAS  Google Scholar 

  24. M. Houssa, E. Chagarov, A. Kummel, MRS Bulletin 34(7), 504 (2009)

    Article  CAS  Google Scholar 

  25. M. Huang, Y. Chang, C. Chang, Y. Lee, P. Chang, J. Kwo, T. Wu, M. Hong, Appl. Phys. Lett. 87(25), 252104 (2005)

    Article  CAS  Google Scholar 

  26. L. Lin, J. Robertson, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 30(4), 04E101 (2012)

    Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett 77(18), 3865 (1996). Erratum Phys. Rev. Lett. 78, 1396 (1997)

    Google Scholar 

  28. N. Troullier, J.L. Martins, Phys. Rev. B 43(3), 1993 (1991). https://doi.org/10.1103/PhysRevB.43.1993

    Article  CAS  Google Scholar 

  29. H.P. Komsa, T.T. Rantala, A. Pasquarello, Phys. Rev. B 86(4), 045112 (2012)

    Article  CAS  Google Scholar 

  30. A. Bouzid, A. Pasquarello, J. Phys. Chem. Lett. 9(8), 1880 (2018)

    Article  CAS  Google Scholar 

  31. D.L. Winn, M.J. Hale, T.J. Grassman, J.Z. Sexton, A.C. Kummel, M. Passlack, R. Droopad, J. Chem. Phys. 127(13), 134705 (2007)

    Article  CAS  Google Scholar 

  32. K. Laasonen, R.M. Nieminen, M.J. Puska, Phys. Rev. B 45(8), 4122 (1992)

    Article  CAS  Google Scholar 

  33. D. Colleoni, G. Miceli, A. Pasquarello, J. Phys. Cond. Matt. 26(49), 492202 (2014)

    Article  CAS  Google Scholar 

  34. J. Robertson, Y. Guo, L. Lin, J. Appl. Phys. 117(11), 112806 (2015)

    Article  CAS  Google Scholar 

  35. S. Pöykkö, M.J. Puska, M. Alatalo, R.M. Nieminen, Phys. Rev. B 54(11), 7909 (1996)

    Article  Google Scholar 

  36. M.J. Caldas, J. Dabrowski, A. Fazzio, M. Scheffler, Phys. Rev. Lett. 65(16), 2046 (1990)

    Article  CAS  Google Scholar 

  37. D. Colleoni, A. Pasquarello, Appl. Phys. Lett. 107(3), 031605 (2015)

    Article  CAS  Google Scholar 

  38. T. Mattila, R.M. Nieminen, Phys. Rev. B 54(23), 16676 (1996)

    Article  CAS  Google Scholar 

  39. D. Colleoni, G. Miceli, A. Pasquarello, Phys. Rev. B 92(12), 125304 (2015)

    Article  CAS  Google Scholar 

  40. D. Colleoni, A. Pasquarello, Microelectron. Eng. 109, 50 (2013)

    Article  CAS  Google Scholar 

  41. M.L. Theye, A. Gheorghiu, H. Launois, J. Phys. C: Solid State Phys. 13(36), 6569 (1980)

    Article  CAS  Google Scholar 

  42. C. Ascheron, A. Schindler, R. Flagmeyer, G. Otto, Nucl. Instr. Meth. B 36(2), 163 (1989)

    Article  Google Scholar 

  43. C.M.H. Driscoll, A.F.W. Willoughby, J.B. Mullin, B.W. Straughan, in IOP Conference Proceedings Gallium Arsenide and Related Compounds vol. 24 ed. by J. Bok (IOP, London, 1975). p. 275

    Google Scholar 

  44. S. Oktyabrsky, D.Y. Peide, Fundamentals of III–V Semiconductor MOSFETs (Springer, 2010)

    Google Scholar 

  45. G. Brammertz, H. Lin, K. Martens, A.R. Alian, C. Merckling, J. Penaud, D. Kohen, W.E. Wang, S. Sioncke, A. Delabie et al., ECS Trans. 19(5), 375 (2009)

    Article  CAS  Google Scholar 

  46. G. Brammertz, H.C. Lin, M. Caymax, M. Meuris, M. Heyns, M. Passlack, Appl. Phys. Lett. 95(20), 202109 (2009)

    Article  CAS  Google Scholar 

  47. V. Djara, T. O’Regan, K. Cherkaoui, M. Schmidt, S. Monaghan, É. O’Connor, I. Povey, D. O’Connell, M. Pemble, P. Hurley, Microelectron. Eng. 109, 182 (2013)

    Article  CAS  Google Scholar 

  48. Y.C. Fu, U. Peralagu, D.A. Millar, J. Lin, I. Povey, X. Li, S. Monaghan, R. Droopad, P.K. Hurley, I.G. Thayne, Appl. Phys. Lett. 110(14), 142905 (2017)

    Article  CAS  Google Scholar 

  49. K. Tang, A.C. Meng, R. Droopad, P.C. McIntyre, A.C.S. Appl. Mater. Interfaces 8(44), 30601 (2016)

    Google Scholar 

  50. H.D. Lee, T. Feng, L. Yu, D. Mastrogiovanni, A. Wan, T. Gustafsson, E. Garfunkel, Appl. Phys. Lett. 94(22), 222108 (2009)

    Article  CAS  Google Scholar 

  51. A. Bouzid, C. Massobrio, J. Chem. Phys. 137(4), 046101 (2012)

    Article  CAS  Google Scholar 

  52. A. Bouzid, C. Massobrio, M. Boero, G. Ori, K. Sykina, E. Furet, Phys. Rev. B 92(13), 134208 (2015)

    Article  CAS  Google Scholar 

  53. K. Wezka, A. Bouzid, K.J. Pizzey, P.S. Salmon, A. Zeidler, S. Klotz, H.E. Fischer, C.L. Bull, M.G. Tucker, M. Boero et al., Phys. Rev. B 90(5), 054206 (2014)

    Article  CAS  Google Scholar 

  54. A. Bouzid, K.J. Pizzey, A. Zeidler, G. Ori, M. Boero, C. Massobrio, S. Klotz, H.E. Fischer, C.L. Bull, P.S. Salmon, Phys. Rev. B 93(1), 014202 (2016)

    Article  CAS  Google Scholar 

  55. A. Bouzid, G. Ori, M. Boero, E. Lampin, C. Massobrio, Phys. Rev. B 96(22), 224204 (2017)

    Article  Google Scholar 

  56. D. Colleoni, G. Pourtois, A. Pasquarello, Appl. Phys. Lett. 110(11), 111602 (2017)

    Article  CAS  Google Scholar 

  57. D. Colleoni, G. Miceli, A. Pasquarello, Appl. Phys. Lett. 107(21), 211601 (2015)

    Article  CAS  Google Scholar 

  58. P. Broqvist, A. Pasquarello, Microelectron. Eng. 84(9), 2022 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assil Bouzid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouzid, A., Pasquarello, A. (2020). Exploring Defects in Semiconductor Materials Through Constant Fermi Level Ab-Initio Molecular Dynamics. In: Levchenko, E., Dappe, Y., Ori, G. (eds) Theory and Simulation in Physics for Materials Applications. Springer Series in Materials Science, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-37790-8_3

Download citation

Publish with us

Policies and ethics