Skip to main content

Hydrogen in Silicon: Evidence of Independent Monomeric States

  • Chapter
  • First Online:
Theory and Simulation in Physics for Materials Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 296))

Abstract

The data on hydrogen in saturated/quenched samples and in samples exposed to plasma have been revisited. It is concluded that the monomeric hydrogen in intrinsic silicon is represented mostly by two neutral species: Hb (presumably a ground state of tetrahedral hydrogen) and Hs (a slow monomer in a different interstitial position). At high T these species are in equilibrium, with a concentration ratio close to 1. At lower T (at least at T ≤ 500 °C) they become independent one of the other. This conclusion differs from a conventional notion that considers bond-centred H+(BC) ions to be dominant in intrinsic Si. In p-Si, boron is passivated not only by H+(BC) ions (denoted H+(1)) but also by another kind of H+ denoted H+(2). A presence of several independent species (Hb, Hs, H+(1) and H+(2)) gives rise to a rich variety of hydrogen depth profiles in plasma-exposed silicon; these profiles are well reproduced by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.I. Pankove, R.O. Wance, J.E. Berkeyheiser, Appl. Phys. Lett. 45, 1100 (1984)

    Article  CAS  Google Scholar 

  2. S.J. Pearton, J.W. Corbett, M. Stavola, Hydrogen in Crystalline Semiconductors (Springer, Berlin, 1991)

    Google Scholar 

  3. C. Herring, N.M. Johnson, Semiconductors Semimetals 34, 225 (1991)

    Article  CAS  Google Scholar 

  4. C. Herring, N.M. Johnson, C.G. Van de Walle, Phys. Rev. B 64, 125209 (2001)

    Article  Google Scholar 

  5. S. Wilking, A. Herguth, G. Hahn, J. Appl. Phys. 113, 194503 (2013)

    Article  Google Scholar 

  6. N. Nampalli, B.J. Hallam, C.E. Chan, M.D. Abbott, S.R. Wenham, IEEE J. Photovoltaics 5, 1580 (2015)

    Article  Google Scholar 

  7. S.K. Estreicher, M. Stavola , J. Weber Silicon, Germanium, and Their Alloys: Defects, Impurities and Nanocrystals, eds by G. Kissinger, S. Pizzini (CRC Press, 2014) (Ch. 7)

    Google Scholar 

  8. V.V. Voronkov, R. Falster, Phys. Status Solidi A 214(7), 1700287 (2017)

    Article  Google Scholar 

  9. V.V. Voronkov, R. Falster, Phys. Status Solidi B 254(6), 1600779 (2017)

    Article  Google Scholar 

  10. R.E. Pritchard, M.A. Ashwin, J.H. Tucker, R.C. Newman, Phys. Rev. B 57, R15048 (1998)

    Article  CAS  Google Scholar 

  11. R.E. Pritchard, J.H. Tucker, R.C. Newman, E.C. Lightowlers, Semicond. Sci. Technol. 14, 77 (1999)

    Article  CAS  Google Scholar 

  12. S.A. McQuaid, M.J. Binns, R.C. Newman, E.C. Lightowlers, J.B. Clegg, Appl. Phys. Lett. 62, 1612 (1003)

    Google Scholar 

  13. M.J. Binns, R.C. Newman, S.A. McQuaid, E.C. Lightowlers, Mater. Sci. Forum 143–147, 861 (1994)

    Google Scholar 

  14. T. Ichimiya, A. Furuichi, Int. J. Appl. Radiat. Isot. 19, 573 (1968)

    Article  CAS  Google Scholar 

  15. A. Van Wieringen, N. Warmoltz, Physica 22, 849 (1956)

    Article  Google Scholar 

  16. J.T. Boremstein, J.W. Corbett, S.J. Pearton, J. Appl. Phys. 73, 2751 (1993)

    Article  Google Scholar 

  17. N.M. Johnson, F.A. Ponce, R.A. Street, R.J. Nemanich, Phys. Rev. B 35, 4166 (1987)

    Article  CAS  Google Scholar 

  18. N.M. Johnson, C. Herring, Phys. Rev. B 43, 14297 (1991)

    Article  CAS  Google Scholar 

  19. R. Rizk, P. de Mierry, D. Ballutaud, M. Aucouturier, D. Mathiot, Phys. Rev. B 44, 6141 (1991)

    Article  CAS  Google Scholar 

  20. N.M. Johnson, M.D. Moyer, Appl. Phys. Lett. 46, 787 (1985)

    Article  CAS  Google Scholar 

  21. N.M. Johnson, Phys. Rev. B 31, 5525 (1985)

    Article  CAS  Google Scholar 

  22. K.J. Chang, D.J. Chadi, Phys. Rev. B 40, 11644 (1989)

    Article  CAS  Google Scholar 

  23. V.V. Voronkov, Adv. Mat. Sci. Eng. 2018, 238543 (2018)

    Google Scholar 

  24. B.Y. Tong, X.W. Wu, G.R. Yang, S.K. Wong, Canad. J. Phys. 67, 379 (1989)

    CAS  Google Scholar 

  25. S.J. Pearton, Mater. Sci. Eng. B 23, 130 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Voronkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voronkov, V.V. (2020). Hydrogen in Silicon: Evidence of Independent Monomeric States. In: Levchenko, E., Dappe, Y., Ori, G. (eds) Theory and Simulation in Physics for Materials Applications. Springer Series in Materials Science, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-37790-8_12

Download citation

Publish with us

Policies and ethics