Skip to main content

Prediction of Energy Gaps in Graphene—Hexagonal Boron Nitride Nanoflakes Using Artificial Neural Networks

  • Chapter
  • First Online:
Theory and Simulation in Physics for Materials Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 296))

Abstract

Machine learning methods are currently applied in conjunction with ab initio density functional theory (DFT) simulations in order to establish computationally efficient alternatives for high-throughput processing in atomistic computations. The proposed method, based on artificial neural networks (ANNs), was used to predict the HOMO-LUMO energy gap in quasi-0D graphene nanoflake systems with randomly generated boron nitride embedded regions. Several artificial neural network (ANN) algorithms were tested in order to optimize the network parameters for the problem at hand. The trained ANNs prove to be computationally efficient at determining the energy gap with good accuracy and show a significant speedup over the classical DFT approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Carrasquilla, R.G. Melko, Machine learning phases of matter. Nat. Phys. 13, 431 (2017)

    Article  CAS  Google Scholar 

  2. A. Tanaka, A. Tomiya, Detection of phase transition via convolutional neural networks. J. Phys. Soc. Japan 86, 063001 (2017)

    Article  Google Scholar 

  3. T. Ohtsuki, T. Ohtsuki, Deep learning the quantum phase transitions in random two-dimensional electron systems. J. Phys. Soc. Japan 85, 123706 (2016)

    Article  Google Scholar 

  4. L. Wang, Discovering phase transitions with unsupervised learning. Phys. Rev. B 94, 195105 (2016)

    Article  Google Scholar 

  5. C. Dietz, T. Kretz, M.H. Thoma, Machine-learning approach for local classification of crystalline structures in multiphase systems. Phys. Rev. E 96, 011301 (2017)

    Article  CAS  Google Scholar 

  6. Y. Liu, T. Zhao, J. Wangwei, S. Shi, Materials discovery and design using machine learning. J. Materiomics 3, 159–177 (2017)

    Article  Google Scholar 

  7. T. Yamashita, N. Sato, H. Kino, T. Miyake, K. Tsuda, T. Oguchi, Crystal structure prediction accelerated by Bayesian optimization. Phys. Rev. Mater. 2, 013803 (2018)

    Article  Google Scholar 

  8. Q. Zhou, P. Tang, S. Liu, J. Pan, Q. Yan, S.-C. Zhang, Learning atoms for materials discovery. Proc. Natl. Acad. Sci. 115, E6411–E6417 (2018)

    Article  CAS  Google Scholar 

  9. B. Kolb, L.C. Lentz, A.M. Kolpak, Discovering charge density functionals and structure-property relationships with prophet: A general framework for coupling machine learning and first-principles methods. Sci. Rep. 7, 1192 (2017)

    Google Scholar 

  10. B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang, A. Choudhary, C. Wolverton, Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014)

    Article  CAS  Google Scholar 

  11. A. Lopez-Bezanilla, O.A. von Lilienfeld, Modeling electronic quantum transport with machine learning. Phys. Rev. B 89, 235411 (2014)

    Article  CAS  Google Scholar 

  12. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Machine learning unifies the modeling of materials and molecules. Sci. Adv. 3 (2017)

    Article  Google Scholar 

  13. C.W. Rosenbrock, E.R. Homer, G. Csányi, G.L.W. Hart, Discovering the building blocks of atomic systems using machine learning application: To grain boundaries. npj Comput. Mater. 3, 29 (2017)

    Article  CAS  Google Scholar 

  14. K. Yao, J.E. Herr, S.N. Brown, J. Parkhill, Intrinsic bond energies from a bonds-in-molecules neural network. J. Phys. Chem. Lett. 8, 2689–2694 (2017)

    Article  CAS  Google Scholar 

  15. G. Hegde, R.C. Bowen, Machine-learned approximations to density functional theory hamiltonians. Sci. Rep. 7, 42669 (2017)

    Article  CAS  Google Scholar 

  16. X. Qu, D.A.R.S. Latino, J. Aires-de Sousa, A big data approach to the ultra-fast prediction of DFT-calculated bond energies. J. Cheminformatics 5, 34 (2013)

    Article  CAS  Google Scholar 

  17. J.C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, K. Burke, Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012)

    Article  CAS  Google Scholar 

  18. L. Li, J.C. Snyder, I.M. Pelaschier, J. Huang, U.-N. Niranjan, P. Duncan, M. Rupp, K.-R. Müller, K. Burke, Understanding machine-learned density functionals. Int. J. Quant. Chem. 116, 819–833 (2016). https://doi.org/10.1002/qua.25040

    Article  CAS  Google Scholar 

  19. A. Chandrasekaran, D. Kamal, R. Batra, C. Kim, L. Chen, R. Ramprasad, Solving the electronic structure problem with machine learning. npj Comput. Mater. 5, 22 (2019)

    Article  Google Scholar 

  20. G.R. Schleder, A.C.M. Padilha, C.M. Acosta, M. Costa, A. Fazzio, From DFT to machine learning: Recent approaches to materials science–A review. J. Phys.: Mater. 2, 032001 (2019)

    Google Scholar 

  21. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 13, 5255–5264 (2017)

    Article  CAS  Google Scholar 

  22. D. Dragoni, T.D. Daff, G. Csányi, N. Marzari, Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in BCC ferromagnetic iron. Phys. Rev. Mater. 2, 013808 (2018)

    Article  Google Scholar 

  23. F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.-R. Müller, Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017)

    Article  CAS  Google Scholar 

  24. T.L. Jacobsen, M.S. Jørgensen, B. Hammer, On-the-fly machine learning of atomic potential in density functional theory structure optimization. Phys. Rev. Lett. 120, 026102 (2018)

    Article  CAS  Google Scholar 

  25. O. SchÃitt, J. VandeVondele, Machine learning adaptive basis sets for efficient large scale density functional theory simulation. J. Chem. Theory Comput. 14, 4168–4175 (2018)

    Article  CAS  Google Scholar 

  26. A. Grisafi, A. Fabrizio, B. Meyer, D.M. Wilkins, C. Corminboeuf, M. Ceriotti, Transferable machine-learning model of the electron density. ACS Central Sci. 5, 57–64 (2019)

    Article  CAS  Google Scholar 

  27. J. Nelson, R. Tiwari, S. Sanvito, Machine learning density functional theory for the Hubbard model. Phys. Rev. B 99, 075132 (2019)

    Article  CAS  Google Scholar 

  28. X. Feng, S. Kwon, J.Y. Park, M. Salmeron, Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7, 1718–1724 (2013)

    Article  CAS  Google Scholar 

  29. J. Zhang, E. Osloub, F. Siddiqui, W. Zhang, T. Ragab, C. Basaran, Anisotropy of graphene nanoflake diamond interface frictional properties. Materials 12, 1425 (2019)

    Article  CAS  Google Scholar 

  30. C. Mansilla Wettstein, F.P. Bonafé, M.B. Oviedo, C.G. Sánchez, Optical properties of graphene nanoflakes: Shape matters. J. Chem. Phys. 144, 224305 (2016)

    Article  CAS  Google Scholar 

  31. C. Cocchi, D. Prezzi, A. Ruini, M.J. Caldas, E. Molinari, Electronics and optics of graphene nanoflakes: Edge functionalization and structural distortions. J. Phys. Chem. C 116, 17328–17335 (2012)

    Article  CAS  Google Scholar 

  32. A.M. Silva, M.S. Pires, V.N. Freire, E.L. Albuquerque, D.L. Azevedo, E.W.S. Caetano, Graphene nanoflakes: Thermal stability, infrared signatures, and potential applications in the field of spintronics and optical nanodevices. J. Phys. Chem. C 114, 17472–17485 (2010)

    Article  CAS  Google Scholar 

  33. S.K. Singh, M. Neek-Amal, F.M. Peeters, Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy. J. Chem. Phys. 140(7), 074304 (2014)

    Article  CAS  Google Scholar 

  34. A. Kuc, T. Heine, G. Seifert, Structural and electronic properties of graphene nanoflakes. Phys. Rev. B 81, 085430 (2010)

    Article  CAS  Google Scholar 

  35. W.L. Wang, S. Meng, E. Kaxiras, Graphene nanoflakes with large spin. Nano Lett. 8, 241–245 (2008)

    Article  CAS  Google Scholar 

  36. V. Castagnola, W. Zhao, L. Boselli, M.C.L. Giudice, F. Meder, E. Polo, K.R. Paton, C. Backes, J.N. Coleman, K.A. Dawson, Biological recognition of graphene nanoflakes. Nat. Commun. 9, 1577 (2018)

    Article  CAS  Google Scholar 

  37. S. Meenakshi, S.J. Sophia, K. Pandian, High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol. Mater. Sci. Eng.: C 90, 407–419 (2018)

    Article  CAS  Google Scholar 

  38. L. Liu, M. Zhou, L. Jin, L. Li, Y. Mo, S. Guoshi, X. Li, H. Zhu, Y. Tian, Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 7, 199 (2019)

    Article  Google Scholar 

  39. J. Wu, W. Pisula, K. Müllen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Article  CAS  Google Scholar 

  40. L. Zhi, K. Mullen, A bottom-up approach from molecular nanographenes to unconventional carbon materials. J. Mater. Chem. 18, 1472–1484 (2008)

    Article  CAS  Google Scholar 

  41. S. Neubeck, L.A. Ponomarenko, F. Freitag, A.J.M. Giesbers, U. Zeitler, S.V. Morozov, P. Blake, A.K. Geim, K.S. Novoselov, From one electron to one hole: Quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small 6, 1469–1473 (2010)

    Article  CAS  Google Scholar 

  42. S. Mutyala, J. Mathiyarasu, Preparation of graphene nanoflakes and its application for detection of hydrazine. Sens. Actuators B: Chem. 210, 692–699 (2015)

    Article  CAS  Google Scholar 

  43. C. Berger, Z. Song, X. Li, W. Xiaosong, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  CAS  Google Scholar 

  44. G.A. Nemnes, T.L. Mitran, A. Manolescu, Gap prediction in hybrid graphene—Hexagonal boron nitride nanoflakes using artificial neural networks. J. Nanomater. 2019, 6960787 (2019)

    Article  CAS  Google Scholar 

  45. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method forab initioorder-nmaterials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002)

    CAS  Google Scholar 

  46. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)

    Article  CAS  Google Scholar 

  47. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991)

    Article  CAS  Google Scholar 

  48. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P.A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zhang, Tensorflow: A system for large-scale machine learning. CoRR abs/1605.08695 (2016)

    Google Scholar 

  49. D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization (2014). http://arxiv.org/abs/1412.6980

Download references

Acknowledgements

This work was supported by the Romanian Ministry of Research and Innovation under the project PN19060205/2019 and by the Romania-JINR cooperation project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Alexandru Nemnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitran, T.L., Nemnes, G.A. (2020). Prediction of Energy Gaps in Graphene—Hexagonal Boron Nitride Nanoflakes Using Artificial Neural Networks. In: Levchenko, E., Dappe, Y., Ori, G. (eds) Theory and Simulation in Physics for Materials Applications. Springer Series in Materials Science, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-37790-8_11

Download citation

Publish with us

Policies and ethics