Skip to main content

Scanning Conditions in Functional Connectivity Magnetic Resonance Imaging: How to Standardise Resting-State for Optimal Data Acquisition and Visualisation?

  • Chapter
  • First Online:
Biomedical Visualisation

Abstract

Functional connectivity magnetic resonance imaging (fcMRI), performed during resting wakefulness without tasks or stimulation, is a non-invasive technique to assess and visualise functional brain networks in vivo. Acquisition of resting-state imaging data has become increasingly common in longitudinal studies to investigate brain health and disease. However, the scanning protocols vary considerably across different institutions creating challenges for comparability especially for the interpretation of findings in patient cohorts and establishment of diagnostic or prognostic imaging biomarkers. The aim of this chapter is to discuss the effect of two experimental conditions (i.e. a low cognitive demand paradigm and a pure resting-state fcMRI) on the reproducibility of brain networks between a baseline and a follow-up session, 30 (±5) days later, acquired from 12 right-handed volunteers (29 ± 5 yrs). A novel method was developed and used for a direct statistical comparison of the test-retest reliability using 28 well-established functional brain networks. Overall, both scanning conditions produced good levels of test-retest reliability. While the pure resting-state condition showed higher test-retest reliability for 18 of the 28 analysed networks, the low cognitive demand paradigm produced higher test-retest reliability for 8 of the 28 brain networks (i.e. visual, sensorimotor and frontal areas); in 2 of the 28 brain networks no significant changes could be detected. These results are relevant to planning of longitudinal studies, as higher test-retest reliability generally increases statistical power. This work also makes an important contribution to neuroimaging where optimising fcMRI experimental scanning conditions, and hence data visualisation of brain function, remains an on-going topic of interest. In this chapter, we provide a full methodological explanation of the two paradigms and our analysis so that readers can apply them to their own scanning protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF et al (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2

    PubMed  PubMed Central  Google Scholar 

  • Andellini M, Cannatà V, Gazzellini S, Bernardi B, Napolitano A (2015) Test-retest reliability of graph metrics of resting state MRI functional brain networks: a review. J Neurosci Methods 253:183–192

    Article  PubMed  Google Scholar 

  • Aron AR, Gluck MA, Poldrack RA (2006) Long-term test–retest reliability of functional MRI in a classification learning task. NeuroImage 29(3):1000–1006

    Article  PubMed  Google Scholar 

  • Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Shmueli K, Duyn JH (2009) Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. Magn Reson Imaging 27(8):1019–1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR et al (2013) The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage 83:550–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  • Bloch F, Hansen WW, Packard ME (1946) Nuclear induction. Phys Rev:69127

    Google Scholar 

  • Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, Mier D et al (2012) Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. NeuroImage 59(2):1404–1412

    Article  PubMed  Google Scholar 

  • Buckner RL, Vincent JL (2007) Unrest at rest: default activity and spontaneous network correlations. NeuroImage 37(4):1091–1096. discussion 1097-9

    Article  PubMed  Google Scholar 

  • Calhoun VD, Eichele T, Pearlson G (2009) Functional brain networks inschizophrenia: a review. Front Hum Neurosci 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavhan GB (2007) MRI made easy. Anshan Ltd, Tunbridge Wells

    Google Scholar 

  • Chou YH, Panych LP, Dickey CC, Petrella JR, Chen NK (2012) Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study. Am J Neuroradiol 33(5):833–838

    Article  PubMed  Google Scholar 

  • Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4:8

    PubMed  PubMed Central  Google Scholar 

  • Currie S, Hoggard N, Craven IJ, Hadjivassiliou M, Wilkinson ID (2013) Understanding MRI: basic MR physics for physicians. Postgrad Med J 89(1050):209–223

    Article  PubMed  Google Scholar 

  • D’Ostilio K, Garraux G (2012) Brain mechanisms underlying automatic and unconscious control of motor action. Front Hum Neurosci 6:265

    PubMed  PubMed Central  Google Scholar 

  • Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci 103(37):13848–13853

    Article  CAS  PubMed  Google Scholar 

  • Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z et al (2008) Functional connectivity of human striatum: a resting state fMRI study. Cereb Cortex 18(12):2735–2747

    Article  PubMed  Google Scholar 

  • Dinis Fernandes C (2013) Resting-state fMRI experimental and analytical methodology: a functional connectivity analysis. Published online master’s thesis. University of Lisbon, Lisbon

    Google Scholar 

  • Fiecas M, Ombao H, van Lunen D, Baumgartner R, Coimbra A, Feng D (2013) Quantifying temporal correlations: a test-retest evaluation of functional connectivity in resting-state fMRI. NeuroImage 65:231–241

    Article  PubMed  Google Scholar 

  • Fox M, Snyder A, Vincent J, Corbetta M, Van Essen D, Raichle M (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco AR, Mannell MV, Calhoun VD, Mayer AR (2013) Impact of analysis methods on the reproducibility and reliability of resting-state networks. Brain Connect 3(4):363–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26(1):15–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorgolewski KJ, Storkey AJ, Bastin ME, Whittle I, Pernet C (2013) Single subject fMRI test-retest reliability metrics and confounding factors. NeuroImage 69:231–243

    Article  PubMed  Google Scholar 

  • Greicius M, Krasnow B, Reiss A, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258

    Article  CAS  PubMed  Google Scholar 

  • Guo CC, Kurth F, Zhou J, Mayer EA, Eickhoff SB, Kramer JH, Seeley WW (2012) One-year test-retest reliability of intrinsic connectivity network fMRI in older adults. NeuroImage 61(4):1471–1483

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallquist MN, Hwang K, Luna B (2013) The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage 06/06;0:208–225

    Article  Google Scholar 

  • Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. J Neurosci 26(51):13338–13343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison BJ, Yücel M, Pujol J, Pantelis C (2007) Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91(1–3):82–86

    Article  PubMed  Google Scholar 

  • Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci U S A 106(27):11376–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huettel SA, Song AW, McCarthy G (2009) Functional magnetic resonance imaging, 2nd edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Kelly AM, Garavan H (2005) Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 15(8):1089–1102

    Article  PubMed  Google Scholar 

  • Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2008) Competition between functional brain networks mediates behavioral variability. NeuroImage 39(1):527–537

    Article  PubMed  Google Scholar 

  • Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302(5648):1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Landis JR, Koch GG (1997) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  Google Scholar 

  • Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci 106(41):17558–17563

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Wang J, Yan C, Shu N, Xu K, Gong G, Yong H (2012) Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study. PLoS One 7(3):e32766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logothetis NK, Murayama Y, Augath M, Steffen T, Werner J, Oeltermann A (2009) How not to study spontaneous activity. NeuroImage 45(4):1080–1089

    Article  PubMed  Google Scholar 

  • Lowe MJ (2010) A historical perspective on the evolution of resting-state functional connectivity with MRI. Magnetic Resonance Materials in Physics, Biology, and Medicine 23:279–288

    Article  PubMed  Google Scholar 

  • Marx E, Angela D, Thomas S, Marianne D, Martin W, Thomas B (2004) Eyes open and eyes closed as rest conditions: impact on brain activation patterns. NeuroImage 21(4):1818–1824

    Article  PubMed  Google Scholar 

  • Manoach DS, Halpern EF, Kramer TS, Chang Y, Goff DC, Rauch SL et al (2001) Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am J Psychiatr 158(6):955–958

    Article  CAS  PubMed  Google Scholar 

  • Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z et al (2008) Functional connectivity of human striatum: a resting state fMRI study. Cereb Cortex 18(12):2735–2747

    Article  PubMed  Google Scholar 

  • McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP (2000) Variability in fMRI: an examination of intersession differences. NeuroImage 11(6 Pt 1):708–734

    Article  CAS  PubMed  Google Scholar 

  • McGraw KO, Wong SP (1996) Formining inferences about some intraclass correlation coefficients. Psychol Methods 1(1):30–46

    Article  Google Scholar 

  • McRobbie DW, Moore EA, Graves MJ, Prince MR (2011) MRI from picture to proton, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Morcom AM, Fletcher PC (2007a) Cognitive neuroscience: the case for design rather than default. NeuroImage 37(4):1097–1099

    Article  Google Scholar 

  • Morcom AM, Fletcher PC (2007b) Does the brain have a baseline? Why we should be resisting a rest. NeuroImage 37(4):1073–1082

    Article  PubMed  Google Scholar 

  • Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44(3):893–905

    Article  PubMed  Google Scholar 

  • Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM (2013) The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. NeuroImage 78:463–473

    Article  PubMed  PubMed Central  Google Scholar 

  • Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE (2006) Statistical parametric mapping: the analysis of functional brain images. Academic, London

    Google Scholar 

  • Perrin JS, Merz S, Bennett DM, Currie J, Steele DJ, Reid IC, Schwarzbauer C (2012) Electroconvulsive therapy reduces frontal cortical connectivity in severe depressive disorder. Proc Natl Acad Sci U S A 109(14):5464–5468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306(5695):443–447

    Article  CAS  PubMed  Google Scholar 

  • Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2(1):25–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428

    Article  CAS  PubMed  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342

    Article  PubMed  Google Scholar 

  • Schrouff J, Perlbarg V, Boly M, Marrelec G, Boveroux P, Vanhaudenhuyse A et al (2011) Brain functional integration decreases during propofol-induced loss of consciousness. NeuroImage 57(1):198–205

    Article  CAS  PubMed  Google Scholar 

  • Schwarz AJ, McGonigle J (2011) Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data. NeuroImage 55(3):1132–1146

    Article  PubMed  Google Scholar 

  • Shehzad Z, Kelly AMC, Reiss PT, Gee DG, Gotimer K, Uddin LQ et al (2009) The resting brain: unconstrained yet reliable. Cereb Cortex 19(10):2209–2229

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AP, Henson RN, Dolan RJ, Rugg MD (2004) fMRI correlates of the episodic retrieval of emotional contexts. NeuroImage 22(2):868–878

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106:13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder AZ, Raichle ME (2012) A brief history of the resting state: the Washington University perspective. NeuroImage 62:902–910

    Article  PubMed  PubMed Central  Google Scholar 

  • Song J, Desphande AS, Meier TB, Tudorascu DL, Vergun S, Nair VA et al (2012) Age-related differences in test-retest reliability in resting-state brain functional connectivity. PLoS One 7(12):e49847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telesford QK, Morgan AR, Hayasaka S, Simpson SL, Barret W, Kraft RA, Mozolic JL, Laurienti PJ (2010) Reproducibility of graph metrics in fMRI networks. Front Neuroinform 4:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Varsou O (2014) Neuroimaging of patients with acute focal neurological symptoms: Investigating new functional and structural magnetic resonance imaging measures. PhD thesis. University of Aberdeen; Scotland.ISNI:0000 0004 5360 5409

    Google Scholar 

  • Wang JH, Zuo XN, Gohel S, Milham MP, Biswal BB, He Y (2011) Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data. PLoS One 6(7):e21976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. NeuroImage 47(4):1408–1416

    Article  PubMed  Google Scholar 

  • Westbrook C, Kaut Roth C, Talbot J (2011) MRI in practice, 4th edn. Blackwell Publishing Ltd, Chichester

    Google Scholar 

  • Yan C, Liu D, He Y, Zou Q, Zhu C, Zuo X et al (2009) Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS One 4(5):e5743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6(1):15–28

    Article  PubMed  Google Scholar 

  • Zuo X, Xing X (2014) Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev 45:100–118

    Article  PubMed  Google Scholar 

  • Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP (2010) Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. NeuroImage 49(3):2163–2177

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant from the NHS Grampian Endowments Trust under the project number 12/35. We would like to thank Professor Alison Murray for assessing the structural scans, Mr. Gordon Buchan for his contribution to the paradigm development and technical support during scanning, Dr. Jennifer Perrin for selecting the pictures used in the low-cognitive demand paradigm, the research radiographers (Mrs Baljit Jagpal, Mrs. Beverly Maclennan, Mrs. Nichola Crouch, and Mrs. Katrina Klaasen), the Aberdeen Biomedical Imaging Centre research staff, the research nurses (Mrs Anu Joyson and Mrs. Heather Gow) and above all the participants for their contribution to this study. The authors also acknowledge the assistance of Dr. Elena Allen for providing the component t-statistic thresholds applied in Allen et al. (2011) for application in this work. Finally the authors would like to note that this research work has been previously discussed in Dr. Varsou’s PhD and Miss Dinis Fernandes’ MSc theses and relevant sections have been referenced accordingly. The novel analysis approach described in this chapter, however, has not been published in a journal publication.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinis Fernandes, C., Varsou, O., Stringer, M., Macleod, M.J., Schwarzbauer, C. (2020). Scanning Conditions in Functional Connectivity Magnetic Resonance Imaging: How to Standardise Resting-State for Optimal Data Acquisition and Visualisation?. In: Rea, P. (eds) Biomedical Visualisation . Advances in Experimental Medicine and Biology, vol 1235. Springer, Cham. https://doi.org/10.1007/978-3-030-37639-0_3

Download citation

Publish with us

Policies and ethics