Skip to main content

Origins of 1/f Noise in Electronic Materials and Devices: A Historical Perspective

  • Chapter
  • First Online:
Noise in Nanoscale Semiconductor Devices

Abstract

From its discovery in 1925 by Johnson until the late 1960s, it was generally agreed that low-frequency excess (1/f) noise in electronic materials and devices is caused primarily by defects and impurities. The 1/f noise of semiconductor devices was considered to be a surface effect, ascribed by McWhorter to fluctuations in carrier number caused by surface charge trapping. After much controversy, the noise of metal films was shown to be due to mobility fluctuations caused by carrier-defect scattering. For MOSFETs and most other electronic devices, overwhelming evidence strongly supports carrier number fluctuations due to trapping effects as the origin of the observed noise. The model of Dutta and Horn allows the estimation of effective defect-energy distributions from comparative measurements of the temperature and frequency dependence of the noise. Examples are presented for MOSFETs (including those based on SiC and two-dimensional materials) that show the particular importance of O vacancy-related defects and hydrogen to the observed noise, and the importance of complementary experimental techniques and density-functional theory calculations in assisting in the identification of the defects that are primarily responsible. The low-frequency noise of GaN-based HEMTs is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.H. Press, Flicker noises in astronomy and elsewhere. Comments Astrophys. 7(4), 103–119 (1978)

    Google Scholar 

  2. J. Timmer, M. Konig, On generating power-law noise. Astron Astrophys. 300(3), 707–710 (1995)

    Google Scholar 

  3. J. Polygiannakis, P. Preka-Papadema, X. Moussas, On signal-noise decomposition of time-series using the continuous wavelet transform: Application to sunspot index. Mon. Not. R. Astron. Soc. 343, 725–734 (2003)

    Article  Google Scholar 

  4. M. Kobayashi, T. Musha, 1/f fluctuation of heartbeat period. IEEE Trans. Biomed. Eng. 29(6), 456–457 (1982)

    Article  Google Scholar 

  5. R.F. Voss, Evolution of long-range fractal correlations and 1/f noise in DNA-base sequences. Phys. Rev. Lett. 68(25), 3805–3808 (1992)

    Article  Google Scholar 

  6. K. Linkenkaer-Hansen, V.V. Nikouline, J.M. Palva, R.J. Ilmoniemi, Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21(4), 1370–1377 (2001)

    Article  Google Scholar 

  7. M.D. Fox, A.Z. Snyder, J.L. Vincent, M.E. Raichle, Intrinsic fluctuations within cortical system account for inter-trial variability in human behavior. Neuron 56(1), 171–184 (2007)

    Article  Google Scholar 

  8. A.W. Lo, Long-term memory in stock market prices. Econometrica 59(5), 1279–1313 (1991)

    Article  MATH  Google Scholar 

  9. H. Niu, J. Wang, Quantifying complexity of financial short-term time series by composite multiscale entropy measure. Commun. Nonlinear Sci. Numer. Simul. 22(1-3), 375–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Gvozdanovic, B. Podobnik, D. Wang, H.E. Stanley, 1/f behavior in cross-correlations between absolute returns in a US market. Physica A Stat. Mech. Appl. 391(9), 2860–2866 (2012)

    Article  Google Scholar 

  11. J.B. Johnson, The Schottky effect in low frequency circuits. Phys. Rev. 26, 71–85 (1925)

    Article  Google Scholar 

  12. J. Bernamont, Fluctuations de potentiel aux bornes d'un conducteur métallique de faible volume parcouru par un courant. Ann. de Physique 7, 71–140 (1937)

    Article  MATH  Google Scholar 

  13. A. van der Ziel, On the noise spectra of semiconductor noise and of flicker effect. Physica XVI, 359–372 (1950)

    Article  Google Scholar 

  14. A.L. McWhorter, 1/f noise and germanium surface properties, in Semiconductor Surface Physics, (Univ. Pennsylvania Press, Philadelphia, 1957), pp. 207–228

    Google Scholar 

  15. C.T. Sah, F.H. Hielscher, Evidence of the surface origin of the 1/f noise. Phys. Rev. Lett. 17, 956–958 (1966)

    Article  Google Scholar 

  16. S.T. Hsu, D.J. Fitzgerald, A.S. Grove, Surface-state related 1/f noise in p-n junctions and MOS transistors. Appl. Phys. Lett. 12, 287–289 (1968)

    Article  Google Scholar 

  17. S. Christenson, I. Lundstrom, C. Svennson, Low-frequency noise in MOS transistors – Theory. Solid State Electron. 11, 797–812 (1968)

    Article  Google Scholar 

  18. F.N. Hooge, 1/f noise is no surface effect. Phys. Lett. 29A(3), 139–140 (1969)

    Article  Google Scholar 

  19. F.N. Hooge, A.M.H. Hoppenbrouwers, 1/f noise in continuous thin gold films. Physica 45(3), 386–392 (1969)

    Article  Google Scholar 

  20. R.F. Voss, J. Clarke, Flicker 1/f noise: Equilibrium temperature and resistance fluctuations. Phys. Rev. B 13(2), 556–573 (1976)

    Article  Google Scholar 

  21. F.N. Hooge, L.K.J. Vandamme, Lattice scattering causes 1/f noise. Phys. Lett. A 66(4), 315–316 (1978)

    Article  Google Scholar 

  22. A. van der Ziel, Flicker noise in electronic devices. Adv. Electron. Electron Phys. 49, 225–296 (1979)

    Article  Google Scholar 

  23. F.N. Hooge, T.G.M. Kleinpenning, L.K.J. Vandamme, Experimental studies on 1/f noise. Rep. Prog. Phys. 44(5), 479–532 (1981)

    Article  Google Scholar 

  24. P. Dutta, P.M. Horn, Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981)

    Article  Google Scholar 

  25. G. Reimbold, Modified 1/f noise trapping theory and experiments in MOS transistors biased from weak to strong inversion: Influence of interface states. IEEE Trans. Electron Devices 31(9), 1190–1198 (1984)

    Article  Google Scholar 

  26. K.S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, D.M. Tennant, Discrete resistance switching in submicrometer Si inversion layers: Individual interface traps and low-frequency (1/f?) noise. Phys. Rev. Lett. 52, 228–231 (1984)

    Article  Google Scholar 

  27. S.M. Kogan, Low-frequency current noise with a 1/f spectrum in solids. Sov. Phys. Usp. 28(2), 170–195. [Usp. Fiz. Nauk, vol. 145, pp. 285-328] (1985)

    Article  Google Scholar 

  28. J. Pelz, J. Clarke, Quantitative local-interference model for 1/f noise in metal films. Phys. Rev. B 36(8), 4479–4482 (1987)

    Article  Google Scholar 

  29. M.B. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988)

    Article  Google Scholar 

  30. N. Giordano, Defect motion and low-frequency noise in disordered metals. Rev. Solid State Science 3(1), 27–69 (1989)

    Google Scholar 

  31. M.J. Kirton, M.J. Uren, Noise in solid-state microstructures: A new perspective on individual defects, interface states, and low-frequency (1/f) noise. Adv. Phys. 38, 367–468 (1989)

    Article  Google Scholar 

  32. A. Jayaraman, C.G. Sodini, A 1/f noise technique to extract the oxide trap density near the conduction band edge of Si. IEEE Trans. Electron Devices 36(9), 1773–1782 (1989)

    Article  Google Scholar 

  33. K.K. Hung, P.K. Ko, C. Hu, Y.C. Cheng, A unified model for the flicker noise in MOSFETs. IEEE Trans. Electron Devices 37, 654–665 (1990)

    Article  Google Scholar 

  34. G. Ghibaudo, O. Roux, C. Nguyen-Duc, F. Balestra, J. Brini, Improved analysis of low frequency noise in field-effect MOS transistors. Phys. Stat. Sol. (a) 124, 571–581 (1991)

    Article  Google Scholar 

  35. D.M. Fleetwood, P.S. Winokur, R.A. Reber Jr., T.L. Meisenheimer, J.R. Schwank, M.R. Shaneyfelt, L.C. Riewe, Effects of oxide, interface, and border traps on MOS devices. J. Appl. Phys. 73, 5058–5074 (1993)

    Article  Google Scholar 

  36. F.N. Hooge, 1/f noise sources. IEEE Trans. Electron Devices 41(11), 1926–1935 (1994)

    Article  Google Scholar 

  37. L.K.J. Vandamme, Noise as a diagnostic tool for quality and reliability of electronic devices. IEEE Trans. Electron Devices 41(11), 2176–2187 (1994)

    Article  Google Scholar 

  38. J.H. Scofield, N. Borland, D.M. Fleetwood, Reconciliation of different gate-voltage dependencies of 1/f noise in nMOS and pMOS transistors. IEEE Trans. Electron Devices 41(11), 1946–1952 (1994)

    Article  Google Scholar 

  39. D.M. Fleetwood, T.L. Meisenheimer, J.H. Scofield, 1/f noise and radiation effects in MOS devices. IEEE Trans. Electron Devices 41, 1953–1964 (1994)

    Article  Google Scholar 

  40. L.K.J. Vandamme, X.S. Li, D. Rigaud, 1/f noise in MOS devices: Mobility or number fluctuations? IEEE Trans. Electron Devices 41(11), 1936–1945 (1994)

    Article  Google Scholar 

  41. T.G.M. Kleinpenning, Low-frequency noise in modern bipolar transistors: Impact of intrinsic transistor and parasitic series resistances. IEEE Trans. Electron Devices 41(11), 1981–1991 (1994)

    Article  Google Scholar 

  42. E. Simoen, C. Claeys, On the flicker noise in submicron silicon MOSFETs. Solid State Electron. 43, 865–882 (1999)

    Article  Google Scholar 

  43. D.M. Fleetwood, H.D. Xiong, Z.Y. Lu, C.J. Nicklaw, J.A. Felix, R.D. Schrimpf, S.T. Pantelides, Unified model of hole trapping, 1/f noise, and thermally stimulated current in MOS devices. IEEE Trans. Nucl. Sci. 49(6), 2674–2683 (2002)

    Article  Google Scholar 

  44. T. Grasser, H. Reisinger, P.J. Wagner, B. Kaczer, Time-dependent defect spectroscopy for characterization of border traps in MOS transistors. Phys. Rev. B 82(24), 245318 (2010)

    Article  Google Scholar 

  45. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P.J. Wagner, F. Schanovsky, J. Franco, M.T. Luque, M. Nehliebel, The paradigm shift in understanding the negative bias-temperature instability: From reaction-diffusion to switching oxide traps. IEEE Trans. Electron Devices 58(11), 3652–3666 (2011)

    Article  Google Scholar 

  46. T. Grasser, Stochastic charge trapping in oxides: From random telegraph noise to bias-temperature instabilities. Microelectron. Reliab. 52(1), 39–70 (2012)

    Article  Google Scholar 

  47. A.A. Balandin, Low-frequency 1/f noise in graphene devices. Nature Nanotechnol. 8(8), 549–555 (2013)

    Article  Google Scholar 

  48. D.M. Fleetwood, 1/f noise and defects in microelectronic materials and devices. IEEE Trans. Nucl. Sci. 62(4), 1462–1486 (2015)

    Article  Google Scholar 

  49. R.F. Voss, J.F. Clarke, 1/f noise in music and speech. Nature 258(5533), 317–318 (1975)

    Article  Google Scholar 

  50. R.F. Voss, J.F. Clarke, 1/f noise in music – Music from 1/f noise. J. Acoust. Soc. Amer. 63(1), 258–263 (1978)

    Article  Google Scholar 

  51. D.J. Levitin, P. Chordia, V. Menon, Musical rhythm spectra from Bach to Joplin obey a 1/f power law. Proc. Nat Acad. Sci. 109(10), 3716–3720 (2002)

    Article  Google Scholar 

  52. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  Google Scholar 

  53. M. Paczuski, S. Maslov, P. Bak, Avalance dynamics in evolution, growth, and depinning models. Phys. Rev. A 53(1), 414–443 (1996)

    Google Scholar 

  54. H.M. Jaeger, S.R. Nagel, Physics of the granular state. Science 255(5051), 1523–1531 (1992)

    Article  Google Scholar 

  55. M. Takayasu, H. Takayasu, 1/f noise in a traffic model. Fractals Compl. Geom. Patt. Scal. Nat. Soc. 1(4), 860–866 (1993)

    MATH  Google Scholar 

  56. J. Beran, R. Sherman, M.S. Taqqu, W. Willinger, Long-range dependence in variable bit-rate video traffic. IEEE Trans. Commun. 43(2-4), 1566–1579 (1995)

    Article  Google Scholar 

  57. R.H. Riedi, M.S. Crouse, V.J. Ribeiro, R.G. Baraniuk, A multifractal wavelet model with application to network traffic. IEEE Trans. Inf. Theory 45(3), 992–1018 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Sornette, D. Sornette, Self organized criticality and earthquakes. Europhys. Lett. 9(3), 197–202 (1989)

    Article  MATH  Google Scholar 

  59. K. Ito, M. Matsuzaki, Earthquakes as self-organized critical phenomena. J. Geophys. Res. Solid Earth Plan. 95(B5), 6853–6860 (1990)

    Article  Google Scholar 

  60. J.H. Scofield, N. Borland, D.M. Fleetwood, Temperature-independent switching rates for a random telegraph signal in a Si MOSFET at low temperatures. Appl. Phys. Lett. 76, 3248–3250 (2000)

    Article  Google Scholar 

  61. J.H. Scofield, D.M. Fleetwood, Physical basis for nondestructive tests of MOS radiation hardness. IEEE Trans. Nucl. Sci. 38, 1567–1577 (1991)

    Article  Google Scholar 

  62. C. Surya, T.Y. Hsiang, Theory and experiment on the 1/f γ noise in p-channel MOSFETs at low drain bias. Phys. Rev. B 33(7), 4898–4905 (1986)

    Article  Google Scholar 

  63. E.G. Ioannidis, C.A. Dimitriadis, S. Haendler, R.A. Bianchi, J. Jomaah, G. Ghibaudo, Improved analysis and modeling of low-frequency noise in nanoscale MOSFETs. Solid State Electron. 76, 54–59 (2012)

    Article  Google Scholar 

  64. H. Wong, Y.C. Cheng, Study of the electronic trap distribution at the Si-SiO2 interface utilizing the low-frequency noise measurement. IEEE Trans. Electron Devices 37(7), 1743–1749 (1990)

    Article  Google Scholar 

  65. P. Wang, R. Jiang, J. Chen, E.X. Zhang, M.W. McCurdy, R.D. Schrimpf, D.M. Fleetwood, 1/f noise in as-processed and proton-irradiated GaN/AlGaN HEMTs due to carrier-number fluctuations. IEEE Trans. Nucl. Sci. 64(1), 181–189 (2017)

    Article  Google Scholar 

  66. S.A. Francis, A. Dasgupta, D.M. Fleetwood, Effects of total dose irradiation on the gate-voltage dependence of the 1/f noise of nMOS and pMOS transistors. IEEE Trans. Electron Devices 57(2), 503–510 (2010)

    Article  Google Scholar 

  67. R.P. Jindal, A. van der Ziel, Phonon fluctuation model for flicker noise in elemental semiconductors. Appl. Phys. Lett. 52(4), 2884–2888 (1981)

    Google Scholar 

  68. M. Mihaila, Phonon observations from 1/f noise measurements. Phys. Lett. 104A(3), 157–158 (1984)

    Article  Google Scholar 

  69. J. Xu, M.J. Deen, MOSFET 1/f noise model based on mobility fluctuation in linear region. Electron. Lett. 38(9), 429–431 (2002)

    Article  Google Scholar 

  70. M.E. Levinshtein, S.L. Rumantsev, R. Gaska, J.W. Yang, M.S. Shur, AlGaN/GaN HEMTs with low 1/f noise. Appl. Phys. Lett. 73(8), 1089–1091 (1998)

    Article  Google Scholar 

  71. F. Crupi, P. Magnone, S. Strangio, F. Iucolano, G. Meneghesso, Low-frequency noise and gate bias instability in normally off AlGaN/GaN HEMTs. IEEE Trans. Nucl. Sci. 63(5), 2219–2222 (2016)

    Google Scholar 

  72. M.B. Weissman, Implications of mobility-fluctation descriptions of 1/f noise in semiconductors. Physica 100B(2), 157–162 (1980)

    Google Scholar 

  73. M.B. Weissman, Survey of recent 1/f noise theories, in Proc. Sixth Intl. Conf. Noise Phys. Syst, ed. by M. D. Gaithersburg, P. H. E. Meijer, R. D. Mountain, R. J. Soulen Jr., (NBS Special Pub. No. 614, Washington, DC, 1981), pp. 133–142

    Google Scholar 

  74. D.M. Fleetwood, J.T. Masden, N. Giordano, 1/f noise in platinum films and ultrathin platinum wires: Evidence for a common, bulk origin. Phys. Rev. Lett. 50(6), 450–453 (1983)

    Article  Google Scholar 

  75. D.M. Fleetwood, N. Giordano, Direct link between 1/f noise and defects in metal films. Phys. Rev. B 31(2), 1157–1159 (1985)

    Article  Google Scholar 

  76. J.H. Scofield, J.V. Mantese, W.W. Webb, Temperature dependence of noise processes in metals. Phys. Rev. B 34(2), 723–731 (1986)

    Article  Google Scholar 

  77. N.M. Zimmerman, W.W. Webb, Microscopic scatterer displacements generate the 1/f resistance noise of H in Pd. Phys. Rev. Lett. 61(7), 889–892 (1988)

    Article  Google Scholar 

  78. J. Pelz, J. Clarke, W.E. King, Flicker (1/f) noise in copper films due to radiation-induced defects. Phys. Rev. B 38(15), 10371–10386 (1988)

    Article  Google Scholar 

  79. K.S. Ralls, R.A. Buhrman, Microscopic study of 1/f noise in metal nanobridges. Phys. Rev. B 44, 5800–5817 (1991)

    Article  Google Scholar 

  80. Y. Fisher, M. McGuire, R.F. Voss, M.F. Barnsley, R.L. Devaney, B.B. Mandelbrot, The Science of Fractal Images (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  81. P.H. Handel, Quantum approach to 1/f noise. Phys. Rev. A 22(2), 745–757 (1980)

    Article  Google Scholar 

  82. A. van der Ziel, P.H. Handel, X. Zhu, K.H. Duh, A theory of the Hooge parameters of solid-state devices. IEEE Trans. Electron Devices 32(3), 667–671 (1985)

    Article  Google Scholar 

  83. P.H. Handel, Fundamental quantum l/f noise in semiconductor devices. IEEE Trans. Electron Devices 41(11), 2023–2032 (1994)

    Article  Google Scholar 

  84. G.S. Kousik, C.M. Van Vliet, G. Bosman, P.H. Handel, Quantum 1/f noise associated with ionized impurity scattering and electron-phonon scattering in condensed matter. Adv. Phys. 34(6), 663–702 (2006)

    Article  Google Scholar 

  85. L.B. Kiss, P. Heszler, An exact proof of the invalidity of Handel’s quantum 1/f noise model. J. Phys. C 19, L631–L633 (1986)

    Article  Google Scholar 

  86. T.M. Nieuwenhuizen, D. Frenkel, N.G. van Kampen, Objections to Handel’s quantum theory of 1/f noise. Phys. Rev. A 35(6), 2750–2753 (1987)

    Article  Google Scholar 

  87. G.S. Kousik, J. Gong, C.M. van Vliet, G. Bosman, W.H. Ellis, E.E. Carrol, P.H. Handel, Flicker noise fluctuations in alpha-radioactive decay. Canadian J. Phys. 65(4), 365–375 (1987)

    Article  Google Scholar 

  88. G. Concas, M. Lissia, Search for non-Poissonian behavior in nuclear β decay. Phys. Rev. E 55(3), 2546–2550 (1997)

    Article  Google Scholar 

  89. J.W. Eberhard, P.M. Horn, Excess (1/f) noise in metals. Phys. Rev. B 18(12), 6681–6693 (1978)

    Article  Google Scholar 

  90. P. Dutta, P. Dimon, P.M. Horn, Energy scales for noise processes in metals. Phys. Rev. Lett. 43(9), 646–649 (1979)

    Article  Google Scholar 

  91. C.D. Liang, P. Wang, S.M. Zhao, E.X. Zhang, M.L. Alles, D.M. Fleetwood, R.D. Schrimpf, R. Ma, Y. Su, S. Koester, Radiation-induced charge trapping in black phosphorus MOSFETs with HfO2 gate dielectrics. IEEE Trans. Nucl. Sci. 65(6), 1227–1238 (2018)

    Article  Google Scholar 

  92. J.W. Martin, The electrical resistivity due to structural defects. Philos. Mag. 24(189), 555–566 (1971)

    Article  Google Scholar 

  93. S. Feng, P.A. Lee, A.D. Stone, Sensitivity of the conductance of a disordered metal to the motion of a single atom: Implications for 1/f noise. Phys. Rev. Lett. 56, 1960–1963 (1986)

    Article  Google Scholar 

  94. P.A. Lee, A.D. Stone, H. Fukuyama, Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. Phys. Rev. B 35(3), 1039–1070 (1987)

    Article  Google Scholar 

  95. M.J. Kirton, M.J. Uren, Capture and emission kinetics of individual Si-SiO2 interface states. Appl. Phys. Lett. 48(19), 1270–1272 (1986)

    Article  Google Scholar 

  96. B. Neri, P. Olivo, B. Ricco, Low-frequency noise in Si-gate MOS capacitors before oxide breakdown. Appl. Phys. Lett. 51(25), 2167–2169 (1987)

    Article  Google Scholar 

  97. P. Restle, Individual oxide traps as probes into sub-micron devices. Appl. Phys. Lett. 53(19), 1862–1864 (1988)

    Article  Google Scholar 

  98. M.J. Kirton, M.J. Uren, S. Collins, M. Schulz, A. Karmann, K. Scheffer, Individual defects at the Si-SiO2 interface. Semicond. Sci. Technol. 4(12), 1116–1126 (1989)

    Article  Google Scholar 

  99. G. Ghibaudo, T. Boutchacha, Electrical noise and RTS fluctuations in advanced CMOS devices. Microelectron. Reliab. 42, 573–582 (2002)

    Article  Google Scholar 

  100. H.D. Xiong, D.M. Fleetwood, B.K. Choi, A.L. Sternberg, Temperature dependence and irradiation response of 1/f noise in MOSFETs. IEEE Trans. Nucl. Sci. 49(6), 2718–2723 (2002)

    Article  Google Scholar 

  101. S.A. Francis, C.X. Zhang, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, K.F. Galloway, E. Simoen, J. Mitard, C. Claeys, Comparison of charge pumping and 1/f noise in irradiated Ge pMOSFETs. IEEE Trans. Nucl. Sci. 59(6), 735–741 (2012)

    Article  Google Scholar 

  102. C.X. Zhang, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, S. Dhar, S.-H. Ryu, X. Shen, S.T. Pantelides, Origins of low-frequency noise and interface traps in 4H-SiC MOSFETs. IEEE Electron Device Lett. 34(1), 117–119 (2013)

    Article  Google Scholar 

  103. C.X. Zhang, X. Shen, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, S.A. Francis, T. Roy, S. Dhar, S.H. Ryu, S.T. Pantelides, Temperature dependence and postirradiation annealing response of the 1/f noise of 4H-SiC MOSFETs. IEEE Trans. Electron Devices 60(7), 2361–2367 (2013)

    Article  Google Scholar 

  104. J. Chen, Y.S. Puzyrev, C.X. Zhang, E.X. Zhang, M.W. McCurdy, D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, S.W. Kaun, E.C.H. Kyle, J.S. Speck, Proton-induced dehydrogenation of defects in AlGaN/GaN HEMTs. IEEE Trans. Nucl. Sci. 60(6), 4080–4086 (2013)

    Article  Google Scholar 

  105. Z. Celik, T.Y. Hsiang, Study of 1/f noise in nMOSFETs: Linear region. IEEE Trans. Electron Devices 32(12), 2798–2802 (1985)

    Article  Google Scholar 

  106. P.S. Winokur, M.M. Sokoloski, Comparison of interface-state buildup in MOS capacitors subjected to penetrating and non-penetrating radiation. Appl. Phys. Lett. 28(10), 627–630 (1976)

    Article  Google Scholar 

  107. S.K. Lai, Interface trap generation in SiO2 when electrons are captured by trapped holes. J. Appl. Phys. 54(5), 2540–2546 (1983)

    Article  Google Scholar 

  108. M. Schulz, Interface states at the SiO2-Si interface. Surf. Sci. 132(1-3), 422–455 (1983)

    Article  Google Scholar 

  109. Y. Nishioka, E.F. da Silva Jr., T.P. Ma, Radiation-induced interface traps in Mo/SiO2/Si capacitors. IEEE Trans. Nucl. Sci. 34(6), 1166–1171 (1987)

    Article  Google Scholar 

  110. E.F. da Silva Jr., Y. Nishioka, T.P. Ma, Two distinct interface trap peaks in radiation-damaged metal/SiO2/Si structures. Appl. Phys. Lett. 51, 270–272 (1987)

    Article  Google Scholar 

  111. T.L. Meisenheimer, D.M. Fleetwood, M.R. Shaneyfelt, L.C. Riewe, 1/f noise in n- and p-channel MOS devices through irradiation and annealing. IEEE Trans. Nucl. Sci. 38, 1297–1303 (1991)

    Article  Google Scholar 

  112. D.M. Fleetwood, M.J. Johnson, T.L. Meisenheimer, P.S. Winokur, W.L. Warren, S.C. Witczak, 1/f noise, hydrogen transport, and latent interface-trap buildup in irradiated MOS devices. IEEE Trans. Nucl. Sci. 44, 1810–1817 (1997)

    Article  Google Scholar 

  113. T. Grasser, K. Rott, H. Reisinger, M. Waltl, J. Franco, B. Kaczer, A unified perspective of RTN and BTI. Proc. IEEE Int. Reliab. Phys. Sympos., 4A.5.1–4A.5.7 (2014)

    Google Scholar 

  114. D.M. Fleetwood, J.H. Scofield, Evidence that similar point defects cause 1/f noise and radiation-induced-hole trapping in MOS devices. Phys. Rev. Lett. 64, 579–582 (1990)

    Article  Google Scholar 

  115. T.L. Meisenheimer, D.M. Fleetwood, Effect of radiation-induced charge on 1/f noise in MOS devices. IEEE Trans. Nucl. Sci. 37, 1696–1702 (1990)

    Article  Google Scholar 

  116. D.M. Fleetwood, M.R. Shaneyfelt, J.R. Schwank, Estimating oxide, interface, and border-trap densities in MOS transistors. Appl. Phys. Lett. 64, 1965–1967 (1994)

    Article  Google Scholar 

  117. D.M. Fleetwood, W.L. Warren, M.R. Shaneyfelt, R.A.B. Devine, J.H. Scofield, Enhanced MOS 1/f noise due to near-interfacial oxygen deficiency. J. Non Cryst. Solids 187, 199–205 (1995)

    Article  Google Scholar 

  118. F.J. Feigl, W.B. Fowler, K.L. Yip, Oxygen vacancy model for E΄/E1 defect in SiO2. Solid State Commun. 14(3), 225–229 (1974)

    Article  Google Scholar 

  119. P.M. Lenahan, P.V. Dressendorfer, Hole traps and trivalent silicon centers in MOS devices. J. Appl. Phys. 55(10), 3495–3499 (1984)

    Article  Google Scholar 

  120. J.R. Schwank, D.M. Fleetwood, The effect of postoxidation anneal temperature on radiation-induced charge trapping in polycrystalline silicon gate metal-oxide-semiconductor devices. Appl. Phys. Lett. 53(9), 770–772 (1988)

    Article  Google Scholar 

  121. A.J. Lelis, T.R. Oldham, H.E. Boesch Jr., F.B. McLean, The nature of the trapped hole annealing process. IEEE Trans. Nucl. Sci. 36, 1808–1815 (1989)

    Article  Google Scholar 

  122. D.M. Fleetwood, S.L. Miller, R.A. Reber Jr., P.J. McWhorter, P.S. Winokur, M.R. Shaneyfelt, J.R. Schwank, New insights into radiation-induced oxide-trap charge through TSC measurement and analysis. IEEE Trans. Nucl. Sci. 39, 2192–2203 (1992)

    Article  Google Scholar 

  123. W.L. Warren, D.M. Fleetwood, M.R. Shaneyfelt, J.R. Schwank, P.S. Winokur, R.A.B. Devine, D. Mathiot, Links between oxide traps, interface traps, and border traps in high-temperature annealed Si/SiO2 systems. Appl. Phys. Lett. 64(25), 3452–3454 (1994)

    Article  Google Scholar 

  124. R.A.B. Devine, W.L. Warren, J.B. Xu, I.H. Wilson, P. Paillet, J.L. Leray, Oxygen gettering and oxide degradation during annealing of Si/SiO2/Si. J. Appl. Phys. 77(1), 175–186 (1995)

    Article  Google Scholar 

  125. P.M. Lenahan, J.F. Conley Jr., What can electron paramagnetic resonance tell us about the Si/SiO2 system? J. Vac. Sci. Technol. B 16(4), 2134–2153 (1998)

    Article  Google Scholar 

  126. D.M. Fleetwood, Total ionizing dose effects in MOS and low-dose-rate sensitive linear-bipolar devices. IEEE Trans. Nucl. Sci. 60(3), 1706–1730 (2013)

    Article  Google Scholar 

  127. T. Grasser, K. Rott, H. Reisinger, M. Waltl, P. Wagner, F. Schanovsky, W. Goes, G. Pobegen, B. Kaczer, Hydrogen-related volatile defects as the possible cause for the recoverable component of NBTI. IEDM Tech. Dig., 409–412 (2013)

    Google Scholar 

  128. T. Grasser, W. Goes, Y. Wimmer, F. Schanovsky, G. Rzepa, M. Waltl, K. Rott, H. Reisinger, V.V. Afanase’ev, A. Stesmans, A.M. El-Sayed, A.L. Shluger, On the microscopic structure of hole traps in pMOSFETs. IEDM Tech. Dig., 530–533 (2014)

    Google Scholar 

  129. W. Goes, Y. Wimmer, A.-M. El-Sayed, G. Rzepa, M. Jech, A.L. Shluger, T. Grasser, Identification of oxide defects in semiconductor devices: A systematic approach linking DFT to rate equations and experimental evidence. Microelectron. Reliab. 87(4), 286–320 (2018)

    Article  Google Scholar 

  130. A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H.E. Maes, U. Schwalke, Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics. IEEE Electron Device Lett. 24(2), 87–89 (2003)

    Article  Google Scholar 

  131. K. Xiong, J. Robertson, M.C. Gibson, S.J. Clark, Defect energy levels in HfO2 high-dielectric-constant gate oxide. Appl. Phys. Lett. 87(18), 183505 (2005)

    Article  Google Scholar 

  132. J. Robertson, K. Xiong, S.J. Clark, Band gaps and defect levels in functional oxides. Thin Solid Films 496, 1–7 (2006)

    Article  Google Scholar 

  133. J.L. Gavartin, D.M. Ramo, A.L. Shluger, G. Bersuker, B.H. Lee, Negative oxygen vacancies in HfO2 as charge traps in high-K gate stacks. Appl. Phys. Lett. 89(8), 082908 (2006)

    Article  Google Scholar 

  134. G.X. Duan, J.A. Hachtel, E.X. Zhang, C.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, R.A. Reed, J. Mitard, D. Linten, L. Witters, N. Collaert, A. Mocuta, A.V.-Y. Thean, M.F. Chisholm, S.T. Pantelides, Effects of negative-bias-temperature instability on low-frequency noise in SiGe pMOSFETs. IEEE Trans. Dev. Mater. Reliab. 16(4), 541–548 (2016)

    Article  Google Scholar 

  135. P. Wang, C. Perini, A.O. Hara, B.R. Tuttle, E.X. Zhang, H. Gong, L. Dong, C. Liang, R. Jiang, W. Liao, D.M. Fleetwood, R.D. Schrimpf, E.M. Vogel, S.T. Pantelides, Radiation-induced charge trapping and low-frequency noise of graphene transistors. IEEE Trans. Nucl. Sci. 65(1), 156–163 (2018)

    Article  Google Scholar 

  136. D.M. Fleetwood, Border traps in MOS devices. IEEE Trans. Nucl. Sci. 39(2), 269–271 (1992)

    Article  Google Scholar 

  137. D.M. Fleetwood, M.R. Shaneyfelt, W.L. Warren, J.R. Schwank, T.L. Meisenheimer, P.S. Winokur, Border traps: Issues for MOS radiation response and long-term reliability. Microelectron. Reliab. 35, 403–428 (1995)

    Article  Google Scholar 

  138. D.M. Fleetwood, Fast and slow border traps in MOS devices. IEEE Trans. Nucl. Sci. 43(6), 779–786 (1996)

    Article  Google Scholar 

  139. D.M. Fleetwood, Border traps and bias-temperature instabilities in MOS devices. Microelectron. Reliab. 80(1), 266–277 (2018)

    Article  Google Scholar 

  140. T. Roy, E.X. Zhang, Y.S. Puzyrev, D.M. Fleetwood, R.D. Schrimpf, B.K. Choi, A.B. Hmelo, S.T. Pantelides, Process dependence of proton-induced degradation in GaN HEMTs. IEEE Trans. Nucl. Sci. 57(6), 3060–3065 (2010)

    Google Scholar 

  141. A. Balandin, Gate-voltage dependence of low-frequency noise in AlGaN/GaN heterostructure field-effect transistors. Electron. Lett. 36(10), 912–913 (2000)

    Article  Google Scholar 

  142. J.A. Garrido, B.E. Foutz, J.A. Smart, J.R. Shealy, M.J. Murphy, W.J. Schaff, L.F. Eastman, E. Muñoz, Low-frequency noise and mobility fluctuations in AlGaN/GaN heterostructure FETs. Appl. Phys. Lett. 76(23), 3442–3444 (2000)

    Article  Google Scholar 

  143. S.L. Rumantsyev, N. Pala, M.S. Shur, R. Gaska, M.E. Levinshtein, P.A. Ivanov, M. Asif Khan, G. Simin, X. Hu, J. Yang, Concentration dependence of the 1/f noise in AlGaN/GaN HEMTs. Semicond. Sci. Technol. 17, 476–479 (2002)

    Article  Google Scholar 

  144. L.H. Huang, S.H. Yeh, C.T. Lee, High frequency and low frequency noise of AlGaN/GaN MOS HEMTs with gate insulator grown using photochemical oxidation method. Appl. Phys. Lett. 93, 043511 (2008)

    Article  Google Scholar 

  145. H. Rao, G. Bosman, Simultaneous low-frequency noise characterization of gate and drain currents in AlGaN/GaN HEMTs. J. Appl. Phys. 106, 103712 (2009)

    Article  Google Scholar 

  146. J. Peransin, P. Vignaud, D. Rigaud, L. Vandamme, 1/f noise in MODFETs at low drain biases. IEEE Trans. Electron Devices 37(10), 2250–2253 (1990)

    Article  Google Scholar 

  147. J. Chen, Y.S. Puzyrev, R. Jiang, E.X. Zhang, M.W. McCurdy, D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, A. Arehart, S.A. Ringel, P. Saunier, C. Lee, Effects of applied bias and high field stress on the radiation response of GaN/AlGaN HEMTs. IEEE Trans. Nucl. Sci. 62(6), 2423–2430 (2015)

    Article  Google Scholar 

  148. T. Roy, E.X. Zhang, Y.S. Puzyrev, X. Shen, D.M. Fleetwood, R.D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C.S. Suh, U.K. Mishra, J.S. Speck, S.T. Pantelides, Temperature dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors. Appl. Phys. Lett. 99, 203501 (2011)

    Article  Google Scholar 

  149. J. Chen, Y.S. Puzyrev, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, A.R. Arehart, S.A. Ringel, S.W. Kaun, E.C.H. Kyle, J.S. Speck, P. Saunier, C. Lee, S.T. Pantelides, High-field stress, low-frequency noise, and long-term reliability of AlGaN/GaN HEMTs. IEEE Trans. Device Mater. Reliab. 16(3), 282–289 (2016)

    Article  Google Scholar 

  150. C.G. de Walle, J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004)

    Article  Google Scholar 

  151. Y. Puzyrev, T. Roy, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, Radiation-induced defect evolution and electrical degradation of AlGaN/GaN high-electron-mobility transistors. IEEE Trans. Nucl. Sci. 58(6), 2918–2924 (2011)

    Article  Google Scholar 

  152. Y.S. Puzyrev, R.D. Schrimpf, D.M. Fleetwood, S.T. Pantelides, Role of Fe complexes in the degradation of GaN/AlGaN high-electron-mobility transistors. Appl. Phys. Lett. 106, 053505 (2015)

    Article  Google Scholar 

  153. X. Shen, Y.S. Puzyrev, D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, Quantum mechanical modeling of radiation-induced defect dynamics in electronic devices. IEEE Trans. Nucl. Sci. 62(5), 2169–2178 (2015)

    Article  Google Scholar 

  154. M.E. Levinshtein, S.L. Rumyantsev, J.W. Palmour, D.B. Slater, Low frequency noise in 4H silicon carbide. J. Appl. Phys. 81(4), 1758–1762 (1997)

    Article  Google Scholar 

  155. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, R. Gaska, M.A. Khan, Low frequency and 1/f noise in wide-gap semiconductors: SiC and GaN. IEE Proc Circ Devices Syst 149(1), 32–39 (2002)

    Article  Google Scholar 

  156. V.V. Afanas’ev, M. Bassler, G. Pensl, M. Schulz, Intrinsic SiC/SiO2 interface states. Physica Status Solid A Appl. Mater. Sci. 162(1), 321–337 (1997)

    Article  Google Scholar 

  157. C. Raynaud, Silica films on SiC: A review of electrical properties and device applications. J. Non-Cryst. Solids 280(1-3), 1–31 (2001)

    Article  Google Scholar 

  158. G. Liu, A.C. Ahyi, Y. Xu, T. Isaacs-Smith, Y.K. Sharma, J.R. Williams, L.C. Feldman, S. Dhar, Enhanced inversion mobility on 4H-SiC (1120) using phosphorus and nitrogen interface passivation. IEEE Electron Device Lett. 34(2), 181–183 (2013)

    Article  Google Scholar 

  159. E. Arnold, Charge-sheet model for silicon carbide inversion layers. IEEE Trans. Electron Devices 46(3), 497–503 (1999)

    Article  Google Scholar 

  160. X. Shen, E.X. Zhang, C.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, S. Dhar, S. Ryu, S.T. Pantelides, Atomic-scale origin of bias-temperature instabilities in SiC-SiO2 structures. Appl. Phys. Lett. 98(6), 063507 (2011)

    Article  Google Scholar 

  161. S. Rumyantsev, G. Liu, W. Stillman, M. Shur, A.A. Balandin, Electrical and noise characteristics of graphene field-effect transistors: Ambient effects, noise sources and physical mechanisms. J. Phys. Condens. Matter 22(39), 395302 (2010)

    Article  Google Scholar 

  162. Y.M. Lin, P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8(8), 2119–2125 (2008)

    Article  Google Scholar 

  163. Q. Shao, G. Liu, D. Teweldebrhan, A.A. Balandin, S. Rumyantsev, M.S. Shur, et al., Flicker noise in bilayer graphene transistors. IEEE Electron Device Lett. 30(3), 288–290 (2009)

    Article  Google Scholar 

  164. G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M.S. Shur, A.A. Balandin, Low-frequency electronic noise in the double-gate single-layer graphene transistors. Appl. Phys. Lett. 95(3), 033103 (2009)

    Article  Google Scholar 

  165. J. Renteria, R. Samnakay, S.L. Rumantsev, C. Jiang, P. Goli, M.S. Shur, A.A. Balandin, Low-frequency 1/f noise in MoS2 transistors: Relative contributions of the channel and contacts. Appl. Phys. Lett. 104, 153103 (2014)

    Article  Google Scholar 

  166. X. Xie, D. Sarkar, W. Liu, J. Kang, O. Marinov, M.J. Deen, K. Banerjee, Low-frequency noise in bilayer MoS2 transistor. ACS Nano 8(6), 5633–5640 (2014)

    Article  Google Scholar 

  167. C. Liang, Y. Su, E.X. Zhang, K. Ni, M.L. Alles, R.D. Schrimpf, D.M. Fleetwood, S.J. Koester, Total ionizing dose effects on HfO2-passivated black phosphorus transistors. IEEE Trans. Nucl. Sci. 64(1), 170–175 (2017)

    Article  Google Scholar 

  168. C.D. Liang, R. Ma, Y. Su, A. O’Hara, E.X. Zhang, M.L. Alles, P. Wang, S.E. Zhao, S.T. Pantelides, S.J. Koester, R.D. Schrimpf, D.M. Fleetwood, Defects and low-frequency noise in irradiated black phosphorus MOSFETs with HfO2 gate dielectrics. IEEE Trans. Nucl. Sci. 65(6), 1227–1238 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Several of the discussions in this chapter are abridged from a recent review [48]. The interested reader is directed to this and other cited sources for additional details. The author thanks D. E. Beutler, J. Chen, C. Claeys, R. A. B. Devine, P. V. Dressendorfer, G. X. Duan, P. Dutta, S. A. Francis, T. Grasser, P. H. Handel, F. N. Hooge, P. M. Horn, N. Giordano, R. Jiang, S. Koester, Sh. M. Kogan, C. D. Liang, Z. Y. Lu, J. T. Masden, P. J. McWhorter, S. L. Miller, C. J. Nicklaw, S. T. Pantelides, J. Pelz, Y. Puzyrev, R. A. Reber, Jr., L. C. Riewe, T. Roy, J. H. Scofield, R. D. Schrimpf, M. R. Shaneyfelt, J. R. Schwank, E. Simoen, X. Shen, W. C. Skocpol, J. S. Speck, C. Surya, A. Tremblay, M. J. Uren, L. K. J. Vandamme, R. F. Voss, P. Wang, W. L. Warren, M. B. Weissman, P. S. Winokur, H. D. Xiong, C. X. Zhang, and E. X. Zhang for experimental assistance and/or stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Fleetwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fleetwood, D.M. (2020). Origins of 1/f Noise in Electronic Materials and Devices: A Historical Perspective. In: Grasser, T. (eds) Noise in Nanoscale Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-37500-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37500-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37499-0

  • Online ISBN: 978-3-030-37500-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics