Skip to main content

Landslide Hazard Induced by Climate Changes in North-Eastern Romania

  • Chapter
  • First Online:
Climate Change, Hazards and Adaptation Options

Part of the book series: Climate Change Management ((CCM))

Abstract

Climate change driven by humans is a certitude, with uncertainties regarding the level of climate variability. This variability will influence natural hazard processes and the climate change uncertainty is transferred also to natural hazard modelling. The uncertainty is further multiplied by the fact that humans continue to modify the land surface, thus influencing the natural hazards, especially in the case of landslides. This mixture of factors can only be investigated through modelling under various scenarios, with results that can be validated in the near future and that can be used to establish measures and capabilities of adaptation to changing patterns of natural hazards induced by climate changes. We present the empirical evaluation of the landslide hazard in Northeastern Romania based on the current climate change scenarios, which show that this area will present an increase in mean annual and seasonal rainfall quantities. The historic rainfall data was empirically correlated with the historical landslide events. The correlation show that this increase in rainfall quantity will probably increase the frequency of the landslide events and of the reactivation of existing landslides, which cover almost 20% of the study area. The maximum 24 h rainfall during summer and the coupling of the autumn rainfall, with spring snowmelt and spring and summer rainfall which are the main triggers of landslides in the study area have the potential to reach a maximum similar with that from the 1960–1990 wet period, in 2030–2050, considering the most probable climate scenarios. This situation require actions in order to manage these natural hazards, because the study area has a high degree of vulnerability, being one of the poorest areas from Romania. This increase in landslide hazard is worrying since the study area exhibit an increase of anthropic pressure which was previously also related with landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler RF, Gu G, Wang JJ, Huffman GJ, Curtis S, Bolvin D (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). Geophys J Res 113: Art. no. D22104. https://doi.org/10.1029/2008jd010536

  • Allan RP, Zveryaev II (2011) Variability in the summer season hydrological cycle over the Atlantic-Europe region 1979–2007. Int J Clim 31:337–348. https://doi.org/10.1002/joc.2070

    Article  Google Scholar 

  • Baatsen M, Haarsma RJ, Van Delden AJ, De Vries H (2015) Severe autumn storms in future western Europe with a warmer Atlantic Ocean. Clim Dyn 45(3–4):949–964. https://doi.org/10.1007/s00382-014-2329-8

    Article  Google Scholar 

  • Benestad RE, Mezghani A, Parding K (2015) An open source R package designed for climate and weather data analysis, empirical statistical downscaling, and visualization. PCC Work RegNal Clim Proj Their Use Impacts Risk. https://doi.org/10.13140/RG.2.1.1138.7764

    Article  Google Scholar 

  • Benestad R, Haensler A, Hennemuth B, Illy T, Jacob D, Keup-Thiel E, Kotlarski S, Nikulin G, Otto J, Rechid D, Sieck K, Sobolowski S, Szabó P, Szépszó G, Teichmann C, Vautard R, Weber T, Zsebehazi G (2017) Guidance for EURO-CORDEX climate projections data use. v1.0

    Google Scholar 

  • Bonnard C, Tacher L, Beniston M (2008) Prediction of landslide movements caused by climate change: modelling the behaviour of a mean elevation large slide in the Alps and assessing its uncertainties. In: Chen Z, Zhang JM, Li ZK, Wu FQ, Ho K (eds) Landslides and engineering slopes: from the past to the future, pp 217–227. https://doi.org/10.1201/9780203885284-c13

  • Bovis MJ, Jones P (1992) Holocene history of earthflow mass movements in south-central British Columbia: the influence of hydroclimatic changes. Can J Earth Sci 29:1746–1755. https://doi.org/10.1139/e92-137

    Article  Google Scholar 

  • Brocker W (1975) Climatic change: are we on the brink of a pronounced global warming? Science 189(4201):460–463. https://doi.org/10.1126/science.189.4201.460

    Article  Google Scholar 

  • Brysse K, Oreskes N, O’reilly J, Oppenheimer M (2013) Climate change prediction: erring on the side of least drama? Glob Environ Change 23(1):327–337. https://doi.org/10.1016/j.gloenvcha.2012.10.008

    Article  Google Scholar 

  • Core Team R (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Croitoru A-E, Minea I (2015) The impact of climate changes on rivers discharge in Eastern Romania. Theor Appl Clim 120:563–573. https://doi.org/10.1007/s00704-014-1194-z

    Article  Google Scholar 

  • Croitoru A-E, Piticar A, Burada DC (2016) Changes in precipitation extremes in Romania. Quaternary Int 415(10):325–335. https://doi.org/10.1016/j.quaint.2015.07.028

    Article  Google Scholar 

  • Cuculeanu V, Tuinea P, Bălteanu D (2002) Climate change impacts in Romania: vulnerability and adaptation options. GeoJournal 57:203–209. https://doi.org/10.1023/B:GEJO.0000003613.15101.d9

    Article  Google Scholar 

  • Dosio A (2016) Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J Geophys Res-Atmos 121:5488–5511. https://doi.org/10.1002/2015JD024411

    Article  Google Scholar 

  • Dumitrescu A, Bîrsan M (2015) ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Nat Hazards 78(2):1045–1063. https://doi.org/10.1007/s11069-015-1757-z

    Article  Google Scholar 

  • Eggleton T (2012) A short introduction to climate change. Cambridge University Press, p 249

    Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016a) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Eyring V, Gleckler PJ, Heinze C, Stouffer RJ, Taylor KE, Balaji V, Guilyardi E, Joussaume S, Kindermann S, Lawrence BN, Meehl GA, Righi M, Williams DN (2016b) Towards improved and more routine Earth system model evaluation in CMIP. Earth Syst Dynam 7:813–830. https://doi.org/10.5194/esd-7-813-2016

    Article  Google Scholar 

  • Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth-Sci R 162:227–252. https://doi.org/10.1016/j.earscirev.2016.08.011

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin 58(3):175–183

    Google Scholar 

  • Giot O, Termonia P, Degrauwe D, De Troch R, Caluwaerts S, Smet G, Berckmans J, Deckmyn A, De Cruz L, De Meutter P, Duerinckx A, Gerard L, Hamdi R, Van den Bergh J, Van Ginderachter M, Van Schaeybroeck B (2016) Validation of the ALARO-0 model within the EURO-CORDEX framework. Geosci Model Dev 9:1143–1152. https://doi.org/10.5194/gmd-9-1143-2016

    Article  Google Scholar 

  • Gobiet A, Jacob D (2012) A new generation of regional climate simulations for Europe: the EURO-CORDEX initiative. Geophys Res Abstracts 14, EGU2012–8211

    Google Scholar 

  • Haarsma RJ, Hazeleger W, Severijns C, De Vries H, Sterl A, Bintanja R, Van oldenborgh GJ, Van den Brink HW (2013) More hurricanes to hit western Europe due to global warming. Geophys Res Lett 40(9):1783–1788. https://doi.org/10.1002/grl.50360

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res-Atmos 113:D20119. https://doi.org/10.1029/2008JD10201

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1990a) Climate change. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) The IPCC scientific assessment. Cambridge University Press, p 365

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1990b) Climate change. In: McG Tehart WJ, Sheldon GW, Griffiths DC (eds) The IPCC impacts assessment. Australian Government Publishing Service, Canberra, p 296

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1990b) Climate change. The IPCC Response Strategies, IPCC, Geneva, Switzerland, p 270

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1992a) Climate change: the 1990 and 1992 IPCC assessments. IPCC, Geneva, Switzerland, p 168

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1992b) Climate change 1992. In: Houghton JT, Callander BA, Varney SK (eds) The supplementary report to the IPCC scientific assessment. Cambridge University Press, p 200

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1992c) Climate change 1992. In: McG Tegart WJ, Sheldon GW (eds) The supplementary report to the IPCC impacts assessment. Australian Government Publishing Service, Canberra, p 115

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1994a) Climate change 1994. In: Houghton JT, Meira Filho LG, Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K (eds) Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, p 339

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1994b) IPCC technical guidelines for assessing climate change impacts and adaptations. University College London and Center for Global Environmental Research, p 59

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1996a) Climate change 1995. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) The science of climate change. Cambridge University Press, p 572

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1996b) Climate change 1995. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Impacts, adaptations and mitigation of climate change: scientific-technical analyses. Cambridge University Press, 878 p

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1996c) Climate change 1995. In: Bruce JP, Lee H, Haites EF (eds) Economic and social dimensions of climate change. Cambridge University Press, p 448

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1996d) IPCC second assessment. Climate change 1995. IPCC, Geneva, Switzerland, p 63

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1997) IPCC special report on the regional impacts of climate change: an assessment of vulnerability. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Cambridge University Press, UK, p 517

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2000a) Aviation and the global atmosphere. In: Penner JE, Lister DH, Griggs DJ, Dokken DJ, Farland MMc (eds) Prepared in collaboration with the scientific assessment panel to the montreal protocol on substances that deplete the ozone layer. Cambridge University Press, UK, p 373

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2000b) Land use, land-use change, and forestry. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) Cambridge University Press, UK, p 375

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2000c) Methodological and technological issues in technology transfer. In: Metz B, Davidson O, Martens J-W, Van Rooijen S, Van Wie Mcgrory L (eds) Cambridge University Press, UK, p 432

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2000d) Special report on emissions scenarios. Cambridge University Press, p 599

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001a) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, p 881

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001b) Climate change 2001: impacts, adaptation, and vulnerability. In: McCarthy JJ, Canziani OS, Leary NA, Dokken DJ, White KS (eds) Cambridge University Press, p 1032

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001b) Climate change 2001: mitigation. IPCC, Geneva, Switzerland, p 753

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001d) Climate change 2001: synthesis report. In: Watson RT, Core Writing Team (eds) IPCC, Geneva, Switzerland, p 151

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2005a) IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Conink H, Loos M, Meyer L (eds) Cambridge University Press, p 431

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2005b) Safeguarding the ozone layer and the global climate system. In: Metz B, Kuijpers L, Solomon S, Andersen SO, Davidson O, Pons J, de Jager D, Kestin T, Manning M, Meyer L (eds) Cambridge University Press, UK, p 478

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007a) Climate change 2007—the physical science basis. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Leroy Miller Jr H, Chen Z (eds) Cambridge University Press, p 996

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007b) Climate change 2007—impacts, adaptation and vulnerability. In: Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (eds) Cambridge University Press, p 976

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007c) Climate change 2007—mitigation of climate change. In: Metz B, Davidson O, Bosch P, Dave R, Meyer L (eds) Cambridge University Press, p 851. https://doi.org/10.1017/cbo9780511546013

  • Intergovernmental Panel on Climate Change (IPCC) (2007d) Climate change 2017: synthesis report. In: Core Writing team, Pachauri RK, Reisinger A (eds) IPCC, Geneva, Switzerland, p 104

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2011) Renewable energy sources and climate change mitigation. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schloemer S, von Stechow C (eds) Special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1075

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) Special report of the intergovernmental panel on climate change. Cambridge University Press, UK, p 582. https://doi.org/10.1017/cbo9781139177245

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535. https://doi.org/10.1017/cbo9781107415324

  • Intergovernmental Panel on Climate Change (IPCC) (2014a) Climate change 2014: impacts, adaptation, and vulnerability. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Part A: global and sectoral aspects working group II contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, p 1131. https://doi.org/10.1017/cbo9781107415379

  • Intergovernmental Panel on Climate Change (IPCC) (2014b) Climate change 2014: mitigation of climate change. In: Edenhofer O, Pichs-madruga R, Sokona Y, Minx JC, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlomer S, von Stechow C, Zwickel T (eds) Working group III contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, p 1435. https://doi.org/10.1017/cbo9781107415416

  • Intergovernmental Panel on Climate Change (IPCC) (2014c) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, p 151

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2015) Workshop report of the intergovernmental panel on climate change workshop on regional climate projections and their use in impacts and risk analysis studies. In: Stocker TF, Qin D, Plattner GK, Tignor M (eds) IPCC working group I technical support unit, University of Bern, Bern, Switzerland, p 171

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2018) Global warming of 1.5 °C. In: Masson-Delmotte V, Zhai P, Portner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Pean C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, Geneva, Switzerland, p 562

    Google Scholar 

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high resolution climate change projections for European impact research. Reg Environ Change 14:563–578

    Article  Google Scholar 

  • Jurchescu M, Micu D, Sima M, Bălteanu D, Dragotă C, Micu M, Bojariu R, Dumitrescu A (2017) An approach to investigate the effects of climate change on landslide hazard at a national scale (Romania). In: Niculiță M, Mărgărint MC (eds) Proceedings of Romanian geomorphology symposium, vol 1, pp 121–124. https://doi.org/10.15551/prgs.2017.121

  • Khan MR, Timmons Roberts J, Saleemul H, Hoffmeister V (2018) The paris framework for climate change capacity building. Routledge Advances in Climate Change Research, Routledge, p 244

    Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Clim 22:1441–1453. https://doi.org/10.1002/joc.773

    Article  Google Scholar 

  • Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. https://doi.org/10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  • Kreienkamp F, Huebener H, Linke C, Spekat A (2012) Good practice for the usage of climate model simulation results—a discussion paper. Enviro Syst Res 2012:1–9. https://doi.org/10.1186/2193-2697-1-9

    Article  Google Scholar 

  • Leal Filho W (ed) (2015) Handbook of climate change adaptation. Springer-Verlag, Berlin Heidelberg, p 2198

    Google Scholar 

  • Leal Filho W (ed) (2016) Innovation in climate change adaptation. Climate change management. Springer, Cham, p 388. https://doi.org/10.1007/978-3-319-25814-0

  • Leal Filho W (ed) (2017) Climate change adaptation in pacific countries fostering resilience and improving the quality of life. Climate change management. Springer, Cham, p 441. https://doi.org/10.1007/978-3-319-50094-2

  • Leal Filho W, Keenan J (eds) (2017) Climate change adaptation in North America. Fostering resilience and the regional capacity to adapt. climate change management. Springer, Cham, p 354. https://doi.org/10.1007/978-3-319-53742-9

  • Leal Filho W, Simane B, Kalangu J, Wuta M, Munishi P, Musiyiwa K (eds) (2017) Climate change adaptation in Africa. Fostering resilience and capacity to adapt. climate change management. Springer, Cham, p 757. https://doi.org/10.1007/978-3-319-49520-0

  • Leal Filho W, Esteves Freitas L (eds) (2018) Climate change adaptation in latin America. Managing vulnerability, fostering resilience. climate change management. Springer, Cham, p 537. https://doi.org/10.1007/978-3-319-56946-8

  • Leal Filho W, Nalau J (eds) (2018) Limits to climate change adaptation. Climate change management. Springer, Cham, p 410. https://doi.org/10.1007/978-3-319-64599-5

  • Mărgărint MC, Niculiţă M (2017) Landslide type and pattern in Moldavian Plateau, NE Romania. In: Rădoane M, Vespremeanu–Stroe A (eds) Landform Dynamics and evolution in Romania. Springer geography, springer cham, pp 271–304. https://doi.org/10.1007/978-3-319-32589-7_12

  • McInnes R, Jakeways J, Fairbank H, Mathie E (eds) (2007) Landslides and climate change: challenges and solutions. Proceedings of the International Conference on Landslides and Climate Change. Taylor and Francis, Ventnor. https://doi.org/10.1201/noe0415443180

  • Minea I, Croitoru AD (2015) Climate changes and their impact on the variation of the groundwater level in the Moldavian Plateau (Eastern Romania). 15th International Multidisciplinary Scientific GeoConference SGEM2015, pp 137–144. https://doi.org/10.5593/sgem2015/b31/s12.018

  • Minea I, Andrei A, Niculiță M (2015) Interpolating phreatic level altitude around Mădârjac village using geomorphometric variables as covariates. 15th International Multidisciplinary Scientific GeoConference (SGEM2015), pp 403–410. https://doi.org/10.5593/sgem2015/b31/s12.052

  • Minea I, Hapciuc OE, Bănuc G, Jora I (2016) Trends and variations of the groundwater level in the North-eastern part of Romania. 16th International Multidisciplinary Scientific GeoConference (SGEM2016), pp 1053–1060. https://doi.org/10.5593/sgem2016/b11/s02.133

  • Minea I, Croitoru AD (2017) Groundwater response to changes in precipitations in North-Eastern Romania. Environ Eng Manag J 16(3):643–651. https://doi.org/10.30638/eemj.2017.066

    Article  Google Scholar 

  • Myhre G, Myhre CEL, Samset BH, Storelvmo T (2013) Aerosols and their relation to global climate and climate sensitivity. Nature Educ Know 4(5):7

    Google Scholar 

  • Necula N, Niculiță M (2017) Landslide reactivation susceptibility modelling in Iași municipality. Revista de Geomorfologie 19:101–117. https://doi.org/10.21094/rg.2017.021

    Article  Google Scholar 

  • Necula N, Niculiță M, Tessari G, Floris M (2017) InSAR analysis of Sentinel-1 data for monitoring landslide displacement of the North–Eastern Copou hillslope, Iași city, Romania. In: Niculiță M, Mărgărint MC (eds) Proceedings of Romanian geomorphology symposium, vol 1, pp 85–88. https://doi.org/10.15551/prgs.2017.85

  • Ni X, Groffman PM (2018) Declines in methane uptake in forest soils. PNAS. https://doi.org/10.1073/pnas.1807377115

    Article  Google Scholar 

  • Niculiţă M, Mărgărint C, Santangelo M (2016) Archaeological evidence for Holocene landslide activity in the Eastern carpathian lowland. Quaternary Int 415(10):175–189. https://doi.org/10.1016/j.quaint.2015.12.048

    Article  Google Scholar 

  • Niculiță M, Andrei A, Lupu C (2017) The landslide database of the North–Eastern Romania. In: Niculiță M, Mărgărint MC (eds) Proceedings of romanian geomorphology symposium, vol 1, pp 81–84. https://doi.org/10.15551/prgs.2017.81

  • Niculiță M, Stoilov-Linu V, Necula N (2018) Recent landslides from Iași metropolitan area. Revista de Geomorfologie 20:90–101. https://doi.org/10.21094/rg.2018.030

    Article  Google Scholar 

  • Polemio M, Petrucci O (2010) Occurrence of landslide events and the role of climate in the twentieth century in Calabria, southern Italy. Quaterly J Eng Geol Hydrogeology 43:403–415. https://doi.org/10.1144/1470-9236/09-006

    Article  Google Scholar 

  • Pujină D (2008) Alunecările de teren din Podișul Moldovei. Editura Performantica, Iaşi (in Romanian)

    Google Scholar 

  • Roberts MJ, Vidale PL, Senior C, Hewitt HT, Bates C, Berthou S, Chang P, Christensen HM, Danilov S, Demory M-E, Griffies SM, Haarsma R, Jung T, Martin G, Minobe S, Ringler T, Satoh M, Schiemann R, Scoccimarro E, Stephens G, Wehner MF (2018a) The benefits of global high-resolution for climate simulation: process-understanding and the enabling of stakeholder decisions at the regional scale. BAMS. https://doi.org/10.1175/BAMS-D-15-00320.1

    Article  Google Scholar 

  • Roberts CD, Senan R, Molteni F, Boussetta S, Mayer M, Keeley SPE (2018b) Climate model configurations of the ECMWF integrated forecasting system (ECMWF-IFS cycle 43r1) for HighResMIP. Geosci Model Dev 11:3681–3712. https://doi.org/10.5194/gmd-11-3681-2018

    Article  Google Scholar 

  • Samset BH, Sand M, Smith CJ, Bauer CJ, Forster PM, Fuglestvedt JS, Osprey S, Schleussner C-F (2018) Climate impacts from a removal of anthropogenic aerosol emissions. Geophys Res Lett 45(2):1020–1029. https://doi.org/10.1002/2017GL076079

    Article  Google Scholar 

  • Sidle RC, Dhakal AS (2002) Potential effects of environmental change on landslide hazards in forest environments. In: Sidle RC (ed), Environmental change and geomorphic hazards in forests, IUFRO research series 9. CABI Publishing, Wallingford, Oxen, UK, pp 123–165. https://doi.org/10.1079/9780851995984

  • Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. Water Resour Monogr Ser 18. AGU, Washington DC, p 312. https://doi.org/10.1029/wm018

  • Steffen W, Rockström J, Richardson K, Lenton TM, Folke C, Liverman D, Summerhayes CP, Barnosky AD, Cornell SE, Crucifix M, Donges JF, Fetzer I, Lade SJ, Scheffer M, Winkelmann R, Schellnhuber HS (2018) Trajectories of the Earth system in the anthropocene. PNAS 115(33):8252–8259. https://doi.org/10.1073/pnas.1810141115

    Article  Google Scholar 

  • Van Haren R, Haarsma RJ, Van Oldenborgh GJ, Hazeleger W (2015a) Resolution dependence of European precipitation in a state-of-the-art atmospheric general circulation model. J Climate 28(13):5134–5149. https://doi.org/10.1175/JCLI-D-14-00279.1

    Article  Google Scholar 

  • Van Haren R, Haarsma RJ, De Vries H, Van Oldenborgh GJ, Hazeleger W (2015b) Resolution dependence of circulation forced future central European summer drying. Enviro Res Lett 10(5):055002. https://doi.org/10.1088/1748-9326/10/5/055002

    Article  Google Scholar 

  • Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Güttler I, Halenka T, Karakostas T, Katragkou E, Keuler K, Kotlarski S, Mayer S, van Meijgaard E, Nikulin G, Patarcic M, Scinocca J, Sobolowski S, Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dynam 41:2555–2575. https://doi.org/10.1007/s00382-013-1714-z

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P1-1.1-PD-2016-0154, within PNCDI III. We acknowledge the data providers in the ECA&D project (https://www.ecad.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Niculiţă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niculiţă, M. (2020). Landslide Hazard Induced by Climate Changes in North-Eastern Romania. In: Leal Filho, W., Nagy, G., Borga, M., Chávez Muñoz, P., Magnuszewski, A. (eds) Climate Change, Hazards and Adaptation Options. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-030-37425-9_13

Download citation

Publish with us

Policies and ethics