Skip to main content

Climate Change, Biotechnology, and Mexican Neotropical Edible Ectomycorrhizal Mushrooms

  • Chapter
  • First Online:
Mushrooms, Humans and Nature in a Changing World

Abstract

Currently, the greatest environmental challenge faced by humankind is climate change. With certainty, we can state that there is no spot on the planet that has remained unaffected by the human being. We live in a geological era that can be accurately called the Anthropocene, from the Greek ἄνθρωπος anthropos = human being and καινός kainos = new. There are two opinions regarding the starting point of this geological era: the invention of agriculture or the industrial revolution. One of the characteristics of the Anthropocene is the mass extinction of living beings, mainly originated by the destruction of natural ecosystems as a result of human activities. The planet lives deforestation rates, never seen before in its recent history. Large forest areas of the planet, in low latitudes, high altitudes with low mineralization rates, are dominated by a symbiosis called ectomycorrhiza according to the newly proposed “Read’s rule”. The ectomycorrhiza is established between more than 20,000 species of fungi and around 8500 species of angiosperms and gymnosperms. Frequently, this symbiosis of a mutualistic nature is obligatory for the plants that establish it. Through this mutualistic symbiosis, the involved fungi receive carbon sources crucial for their survival, and in return they provide nutrients to their associated hosts, as well as greater resistance to stress factors such as drought, presence of potentially toxic elements, low fertility, and pathogens. Despite these known facts, there are several countries that have not incorporated the application of ectomycorrhizal inoculants in their plant production programs for reforestation, afforestation, forest plantations, or restoration of areas. As a consequence, in these countries, the tree survival rates have been historically low. Mexico occupies the eighth place in terms of forested area in the world. Paradoxically, at the same time, the country has had historically one of the highest deforestation rates in the world. In Mexico, ectomycorrhizal inoculation has not been incorporated in the massive plant production with reforestation purposes; as a consequence, the survival rates when transplanting trees from greenhouse or nurseries to field conditions, ranges for example for pines between 0% and 20% at national level. In this scenario, and taking into account that the country is one of the largest genetic centers of biodiversity of edible wild mushrooms, during the last two decades, the authors of this chapter have been developing a line of research related to controlled inoculation using ectomycorrhizal edible fungi. This chapter presents a synthesis of more than 100 combinations evaluated, a summarized analysis of the results obtained, and an evaluation of the challenges to be faced in the future for the application of such technology in the production of ectomycorrhized plants with forest importance in the country, with the subsequent success in reforestations, carbon sequestration, and global change mitigation.

As for the future, it is not a question of predicting it, but of making it possible

Antoine de Saint-Exupéry, Citadelle (1948)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almaraz LlA (2019) Diversidad de hongos ectomicorrízicos y su relación con rizobacterias sobre el crecimiento de plantas de Pinus maximartinezii Rzed. (in Spanish). Thesis of Master Science, Colegio de Postgraduados, San Luis Potosí, México

    Google Scholar 

  • Almazán CPJ (2019) Crecimiento de Pinus oocarpa Schiede ex Schltdl. inoculado con especies de hongos ectomicorrízicos comestibles (in Spanish). Thesis of Biologist, Instituto Tecnológico de Ciudad Altamirano, Guerrero, México

    Google Scholar 

  • Anthropocene Journal (2019) Available from www.sciencedirect.com/journal/anthropocene. Accessed 4 Oct 2019

    Google Scholar 

  • Arteaga-León C (2014) Ectomicorrización con hongos de la Sierra Nevada, México en el crecimiento y movilización nutrimental de Pinus ayacahuite Ehrenb. ex Schltdl. (in Spanish). Doctor of Science Thesis, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, Estado de México, México

    Google Scholar 

  • Arteaga-León C, Pérez-Moreno J, Espinosa-Victoria D et al (2018) Ectomycorrhizal inoculation with edible fungi increases plant growth and nutrient contents of Pinus ayacahuite. Rev Mex Biodivers 89:1089–1099. https://doi.org/10.22201/ib.20078706e.2018.4.2235

  • Barnosky AD, Matzke N, Tomiya S et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  PubMed  Google Scholar 

  • Barragán-Soriano JL, Pérez-Moreno J, Almaraz-Suárez JJ et al (2018) Inoculation with an edible ectomycorrhizal fungus and bacteria increases growth and improves the physiological quality of Pinus montezumae Lamb. Revista Chapingo Serie Ciencias Forestales y del Ambiente 24:3–16. https://doi.org/10.5154/r.rchscfa.2017.01.010

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    Article  PubMed  Google Scholar 

  • Bruns TD, Peay KG, Boynton PJ et al (2009) Inoculum potential of Rhizopogon spores increases with time over the first 4 yr of a 99-yr spore burial experiment. New Phytol 181:463–470

    Article  PubMed  Google Scholar 

  • Caballero VMG (2019) Importancia biocultural y potencial biotecnológico de hongos silvestres comestibles en la comunidad zapoteca de Santa Catalina Quierí, Yautepec, Oaxaca (in Spanish). Thesis of Biologist, Instituto Tecnológico del Valle de Oaxaca, Oaxaca, México

    Google Scholar 

  • Cardoso Del RM (2017) Caracterización metagenómica del microbioma asociado a ectomicorrizas y supervivencia en campo de dos pinos inoculados con Suillus pungens y Thelephora terrestris (in Spanish). Thesis of Master Science, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, estado de México, México

    Google Scholar 

  • Carrasco HV (2014) Inoculación de hongos silvestres comestibles en pinos nativos de México (in Spanish). Doctor of Science Thesis, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, estado de México, México

    Google Scholar 

  • Carrasco-Hernández V, Pérez-Moreno J, Espinosa-Hernández V et al (2011) Contenido de nutrientes e inoculación con hongos ectomicorrízicos comestibles en dos pinos neotropicales. Revista chilena de historia natural 84:83–96. https://doi.org/10.4067/S0716-078X2011000100006

  • Carrera NA (2004) Inoculación con hongos ectomicorrízicos en Pinus patula Schlt. et Cham. y Pinus greggii Engelm. en invernadero (in Spanish). Thesis of Master Science, División de Ciencias Forestales, Universidad Autónoma de Chapingo, Texcoco de Mora, estado de México, México

    Google Scholar 

  • Carrera-Martínez A, Ríos-García U, Martínez-Reyes M et al (2017) First record of synthesis between three ectomycorrhizal edible mushrooms and Pinus maximartinezii a Mexican endangered native species. In: Pérez-Moreno J, Guerin-Laguette A (eds) Mushrooms, humans and nature in a changing world, Proceedings of the 9th International Workshop on Edible Mycorrhizal Mushrooms (IWEMM9) Colegio de Postgraduados and CONACYT, Texcoco, Mexico, p 74

    Google Scholar 

  • Castellano MA, Trappe JM, Molina R (1985) Inoculation of container-grown Douglas-fir seedlings with basidiospores of Rhizopogon vinicolor and R. colossus: effects of fertility and spore application rate. Can J For Res 15:10–13

    Article  Google Scholar 

  • Carrera-Martínez A (2017) Identificación morfológica, anatómica y molecular de hongos ectomicorrízicos asociados con Pinus ayacahuite Ehrenberg (in Spanish). Thesis of Biologist, Instituto Tecnológico del Valle de Oaxaca, Oaxaca, México

    Google Scholar 

  • Chakraborty A (2019) Mountains as vulnerable places: a global synthesis of changing mountain systems in the Anthropocene. GeoJournal (in press). https://doi.org/10.1007/s10708-019-10079-1

  • Chen L, Swenson NG, Ji N et al (2019) Differential soil fungus accumulation and density dependence of tres in a subtropical forest. Science 366:124–128

    Article  CAS  PubMed  Google Scholar 

  • Comandini O, Rinaldi AC, Kuyper TW (2012) Measuring and estimating ectomycorrhizal fungal diversity: a continuous challenge. In: Pagano M (ed) Mycorrhiza: occurrence in natural and restored environments. Nova Science Publishers, New York, NY, pp 165–200

    Google Scholar 

  • Cortés GP (2019) Efecto de la inoculación del hongo comestible ectomicorrízico Laccaria proxima en el crecimiento, contenido nutrimental y calidad fisiológica de Pinus arizonica y Pinus greggii (in Spanish). Thesis of Biologist. Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, México

    Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 415:23. https://doi.org/10.1038/415023a

    Article  CAS  PubMed  Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) The anthropocene. Global Change Newsletter 41:17–18

    Google Scholar 

  • Cruz-Ibáñez EM, Martínez RM, Pérez MJ et al (2018) Inoculación líquida con hongos silvestres comestibles ectomicorrízicos en el crecimiento y desarrollo de Pinus greggii en invernadero. In: 1er Congreso Nacional de Investigación en Ciencia e Innovación de Tecnologías Productivas, Altamirano, Guerrero. Mexico, pp 15–25

    Google Scholar 

  • Cruz-Ibáñez EM, Ortiz LI, Martínez RM (2019) Micorrización de pinos con el hongo silvestre comestible Laccaria proxima, sin el uso de fertilizantes. In: 1er Simposio y 2do Seminario Internacional de Educación Ambiental y Desarrollo Sustentable (SIEA 2019). Texcoco, estado de Mexico, pp 40–53

    Google Scholar 

  • Charya LS, Garg S (2019) Advances in methods and practices of ectomycorrhizal research. In: Meena SN, Naik MM (ed) Advances in Biological Science Research: A Practical Approach. Academic Press, London, UK, pp 303–325

    Google Scholar 

  • Díaz-Balbuena Y (2017) Biotecnología de inoculación de árboles de importancia forestal en México con hongos comestibles ectomicorrízicos (in Spanish). Thesis of Biologist, Instituto Tecnológico de Ciudad Altamirano, Guerrero, México

    Google Scholar 

  • Escobar H (2019) Amazon fires clearly linked to deforestation, scientist say. Science 365:853

    Article  CAS  PubMed  Google Scholar 

  • FAO (2005) Global forest resources assessment. FAO, UN Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (2015) Global forest resources assessment. FAO, UN Food and Agriculture Organization, Rome

    Google Scholar 

  • Farjon A (2013) Pinus greggii. The IUCN Red List of Threatened Species 2013: e.T32630A2822678. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32630A2822678.en

  • Flores-Armas L (2017) Inoculación con el hongo ectomicorrízico comestible Suillus pseudobrevipes en Pinus pseudostrobus y Pinus greggii (in Spanish). Thesis of Biologist, Instituto Tecnológico Superior de Perote, Veracruz, México

    Google Scholar 

  • Franco-Ramírez A, Pérez-Moreno J, Sánchez-Viveros G et al (2019) Coinoculation of Pinus greggii Engelm. arbuscular and ectomycorrhizal fungi. In: International Conference on Mycorrhiza, Merida, Mexico, Mycorrhiza for a sustainable world, Mexico, p 179

    Google Scholar 

  • Fuentes GO, Garzón TA (2017) Aspectos biotecnológicos y de biodiversidad ectomicorrízica de Pinus maximartinezii Rzedowski en la mixteca Oaxaqueña (in Spanish). Thesis of Forestal Engineer. Instituto Tecnológico Superior de San Miguel el Grande, Tlaxiaco, Oaxaca, México

    Google Scholar 

  • Galindo-Flores G, Castillo-Guevara C, Campos-López A et al (2015) Caracterización de las ectomicorrizas formadas por Laccaria trichodermophora y Suillus tomentosus en Pinus montezumae. Bot Sci 93:855–863

    Google Scholar 

  • García-Rodríguez JL, Pérez-Moreno J, Aldrete A et al (2006) Caracterización del hongo silvestre ectomicorrízico Pisolithus tinctorius (Pers.) Coker et Couch en cultivo y en simbiosis con eucalipto y pino. Agrociencia 40:665–676

    Google Scholar 

  • Garibay-Orijel G, Morales-Marañon E, Domínguez-Gutiérrez M et al (2013) Caracterización morfológica y genética de las ectomicorrizas formadas entre Pinus montezumae y los hongos presentes en los bancos de esporas en la Faja Volcánica Transmexicana. Revista Mexicana de Biodiversidad 84:153–169

    Article  Google Scholar 

  • GFR (2010) Global forest resources assessment 2010. Main report. FAO Forestry Paper 163. FAO, Rome

    Google Scholar 

  • Gropp RE (2020) Catastrophes and Disasters: Do We Have a Scientific Infrastructure to Inform Decision-making?. BioScience 70:199–199

    Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12:e0185809. https://doi.org/10.1371/journal.pone.0185809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heredia AC (2011) Hongos comestibles silvestres en una zona otomí y dinámica de colonización ectomicorrízica entre Pinus pseudostrobus y Hebeloma mesophaeum (in Spanish). Thesis of Master Science, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, estado de México, México

    Google Scholar 

  • Hernández SF (2016) Biotecnología, Etnomicología y Mesofauna asociada con hongos ectomicorrízicos comestibles en la mixteca oaxaqueña (in Spanish). Doctor of Science Thesis, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, estado de México, México

    Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. https://doi.org/10.1038/nature11118

    Article  CAS  PubMed  Google Scholar 

  • Index fungorum (2019) Index fungorum database with contributions from almost 500 institutions, projects and individuals leaded by Paul Kirk from CABI. Available from http://www.indexfungorum.org/Names/Names.asp (consulted on different dates until May 19, 2019)

  • IPCC (2019) Intergovermental panel on climate change, Climate Change and Land, An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, Summary for Policymakers. WMO, UNEP. 41p

    Google Scholar 

  • Ishida TA, Nara K, Tanaka M et al (2008) Germination and infectivity of ectomycorrhizal fungal spores in relation to their ecological traits during primary succession. New Phytol 180:491–500

    Article  PubMed  Google Scholar 

  • Jiménez M (2011) Estudio etnomicológico y biotecnológico de hongos silvestres comestibles ectomicorrízicos en Pinus pseudostrobus y evaluación de bacterias promotoras de crecimiento vegetal (in Spanish). Thesis of Master Science, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, estado de México, México

    Google Scholar 

  • Kalsotra T, Khullar S, Agnihotri R et al (2018) Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus hymalayensis and their role in metaltolerance. Microbiology 164:868–876

    Article  CAS  PubMed  Google Scholar 

  • Khullar S, Reddy MS (2016) Cadmium induced glutathione bioaccumulation mediated by γ-glutamylcysteine synthetase in ectomycorrhizal fungus Hebeloma cylindrosporum. Biometals 32:101–110

    Article  CAS  Google Scholar 

  • Khullar S, Reddy MS (2019) Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal(loid) homeostasis. Environ Microbiol Rep 11:53–61. https://doi.org/10.1111/1758-2229.12712

  • Lakshangy CS, Sandeep G (2019) Advances in methods and practices of ectomycorrhizal research. In: Meena SN, Naik MM (eds) Advances in biological science research: a practical approach. Academic Press, New York, NY, pp 303–325. Available from https://www.sciencedirect.com/science/article/pii/B9780128174975000197?via%3Dihub

    Google Scholar 

  • Lazo-Montaño A, Martínez RM, Pérez MJ et al (2018) Biotecnología de la inoculación de Pinus hartwegii con un consorcio de hongos silvestres comestibles ectomicorrízicos del género Laccaria. In: 1er Congreso Nacional de Investigación en Ciencia e Innovación de Tecnologías Productivas, Altamirano, Guerrero, Mexico, pp 26–36

    Google Scholar 

  • Lazo-Montaño A, Ríos GU, Pérez MJ (2019) Bioinoculación de Pinus hartwegii (pino de las alturas), como una estrategia ante el cambio climático. In: 1er Simposio y 2do Seminario Internacional de Educación Ambiental y Desarrollo Sustentable (SIEA2019), Texcoco, estado de México, Mexico, pp 54–67

    Google Scholar 

  • López-Gutiérrez A, Pérez-Moreno J, Hernández-Santiago F et al (2018) Nutrient mobilization, growth and field survival of Pinus pringlei inoculated with three ectomycorrhizal mushrooms. Bot Sci 96:286–304

    Article  Google Scholar 

  • Lovelock J (1992) Gaia una ciencia para curar el planeta. Oasis, Barcelona

    Google Scholar 

  • Luciano DKI (2018) Biotecnología de los hongos ectomicorrízicos Suillus brevipes y Thelephora terrestris asociados con el pino neotropical Pinus greggii (in Spanish). Thesis of Biologist, Instituto Tecnológico de Ciudad Altamirano, Guerrero, México

    Google Scholar 

  • Luciano DKI, Cortés SJ, Martínez RM et al (2018a) Síntesis de la ectomicorríza y formación de esporomas de Laccaria laccata asociada a Pinus teocote Schiede ex Schltdl. un árbol resistente a sequía. In: XII Congreso Nacional de Micología, Xalapa, Veracruz, México, p 370

    Google Scholar 

  • Luciano DKI, Martínez RM, Cortés SJ et al (2018b) Aspectos biotecnológicos de la inoculación de pinos con hongos ectomicorrizicos en invernadero y campo. In: 1er Congreso Nacional de Investigación en Ciencia e Innovación de Tecnologías Productivas, Altamirano, Guerrero, México, pp 37–47

    Google Scholar 

  • Luciano DKI, Martínez RM, Pérez MJ et al (2018c) Bioensayos exitosos utilizando pinos ectomicorrizados con hongos comestibles en el Área natural protegida Jardín Botánico Cozcaquauhco, Molino de Flores, Texcoco, estado de México. In: La Red Nacional de Áreas Naturales Protegidas en su II Congreso Internacional de ANP’s, Aguascalientes, México, p 47

    Google Scholar 

  • Martin TP, Harris JR, Eaton GK et al (2003) The efficacy of ectomycorrhizal colonization of pin and scarlet oak in nursery production. J Environ Hort 21:45–50

    Google Scholar 

  • Martínez-Nevárez LE, Sarmiento-López H, Sígala-Rodríguez JA et al (2016) Respuesta a la inoculación inducida de Russula delica Fr. en plantas de Pinus engelmannii Carr. en vivero. Revista Mexicana de Ciencias Forestales 7:108–117

    Article  Google Scholar 

  • Martínez-Reyes M, Pérez-Moreno J, Villarreal-Ruiz L et al (2012) Crecimiento y contenido nutrimental de Pinus greggii Engelm. inoculado con el hongo comestible ectomicorrízico Hebeloma mesophaeum (Pers.) Quél. Revista Chapingo Serie Ciencias Forestales y del Ambiente 18:183–192 https://doi.org/10.5154/r.rchscfa.2010.11.112

  • Méndez NM (2007). Inoculación de pinos de importancia forestal útiles en restauración de áreas degradadas con hongos comestibles ectomicorrízicos (in Spanish). Thesis of Master Science, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, estado de México, México

    Google Scholar 

  • Méndez-Neri M, Pérez-Moreno J, Quintero-Lizaola R et al (2011) Crecimiento y contenido nutrimental de Pinus greggii inoculado con tres hongos comestibles ectomicorrízicos. Terra Latinoamericana 29:73–81

    Google Scholar 

  • Moncada de la Fuente J, Anaya Garduño M, Ortiz-Solorio C et al (2013) Suelo: protejamos al suelo que nos da vida. Colegio de Postgraduados, SAGARPA, Texcoco

    Google Scholar 

  • Mongabay (2019). Available from https://news.mongabay.com/2019/09/brazils-satellite-agency-resumes-releasing-deforestation-data/. Accessed 6 Oct 2019

  • Morales-Rivera IL (2017) Porcentaje de colonización ectomicorrízica en Pinus greggii originado por la inoculación con diferentes dosis del hongo comestible Laccaria próxima (in Spanish). Thesis of Biologist, Instituto Tecnológico Superior de Perote, Veracruz, México

    Google Scholar 

  • Myers-Madeira EC (2008) Policies to reduce emissions from deforestation and degradation (redd) in developing countries. Resources for the Future, Washington, DC

    Google Scholar 

  • Nara K (2006) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178

    Article  CAS  PubMed  Google Scholar 

  • Nuñez RE (2013) Inoculación micelial de Pinus hartwegii con hongos ectomicorrizógenos provenientes de la cuenca del Rio Magdalena D.F. en invernadero (in Spanish). Thesis of Master Science, Universidad Autónoma de Tlaxcala, Tlaxcala, México

    Google Scholar 

  • Obase K, Tamai Y, Yajima T et al (2009) Mycorrhizal synthesis of four ectomycorrhizal fungi in potted Populus maximowiczii seedlings. Mycoscience 50:143–145

    Article  Google Scholar 

  • Olivier JGJ, Janssens-Maenhout G, Muntean M et al (2013) Trends in global CO2 emissions: 2013 report. PBL Netherlands Environmental Agency of the European Commission’s Joint Research Center, The Hague

    Google Scholar 

  • Ortiz-López I (2019) Biotecnología de inoculación de Pinus greggii Engelm. con el hongo silvestre comestible ectomicorrízico Suillus pungens Thiers & A.H. Sm. (in Spanish). Thesis of Biologist, Universidad de la Sierra Juárez, Oaxaca, México

    Google Scholar 

  • Ortiz-López I, Hernández AF, Martínez RM et al (2018) Ectomicorrizas de Pinus greggii inoculado con himenios jóvenes y maduros del hongo comestible Suillus pungens. In: 1er Congreso Nacional de Investigación en Ciencia e Innovación de Tecnologías Productivas, Altamirano, Guerrero, México, pp 48–58

    Google Scholar 

  • Perea-Estrada VM, Pérez-Moreno J, Villarreal-Ruiz L et al (2009) Humedad edáfica, nitrógeno y hongos ectomicorrízicos comestibles en el crecimiento de pino. Rev Fitotec Mex 32:93–102

    Google Scholar 

  • Pérez-Moreno J (1992) Aspectos ecológicos, aislamiento de cepas, síntesis de micorriza y pruebas “in vitro” contra patógenos de diversos hongos ectomicorrízicos del Parque Nacional Zoquiapan, Edo. de México. (in Spanish). Thesis of Master Science, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, estado de México, México

    Google Scholar 

  • Pérez-Moreno J, Martínez-Reyes M, Lorenzana-Fernández A et al (2009) Social and biotechnological of wild edible mushrooms in México, with emphasis in the Izta-Popo and Zoquiapan National Parks. Acta Botanica Yunnanica (Suppl XVI):55–61

    Google Scholar 

  • Pérez-Moreno J, Lorenzana-Fernández A, Medel-Ortiz R et al (2014) Los hongos ectomicorrizicos de México: una perspectiva global. In: Alvarez J, Rodríguez-Guzmán MP, Alarcón A (eds) Biodiversidad microbiana de México. UNAM y Colegio de Postgraduados, Mexico

    Google Scholar 

  • Pérez-Téllez J, Martínez-Reyes M, Hernández-Santiago F et al (2017) Inoculation with two ectomycorrhizal edible fungi in Pinus cembroides subsp. orizabensis a drought-resistant species. In: Pérez-Moreno J, Guerin-Laguette A (eds) Mushrooms, humans and nature in a changing world, Proceedings of the 9th International Workshop on Edible Mycorrhizal Mushrooms (IWEMM9) Colegio de Postgraduados and CONACYT, Texcoco, Mexico, p 125

    Google Scholar 

  • Perry J (1991) The pines of Mexico and Central America. Timber Press, Portland, OR

    Google Scholar 

  • Population Matters (2019) Contador de población mundial, en el sitio web Population Matters. Available from http://populationmatters.org/

  • Portillo-Manzano E, López-Reyes L, Tapia–Hernández A et al (2017) Biotechnological application of plant growth promoting bacteria and Laccaria laccata in the growth of Pinus patula. In: Pérez-Moreno J, Guerin-Laguette A (eds) Mushrooms, humans and nature in a changing world, Proceedings of the 9th International Workshop on Edible Mycorrhizal Mushrooms (IWEMM9) Colegio de Postgraduados and CONACYT, Texcoco, Mexico, p 126

    Google Scholar 

  • Ramírez CE (2017) Etnomicología en la zona Tlahuica-Pjiekakjoo del estado de México. (in Spanish). Thesis in Licentiate in Sustainable Development, Universidad Intercultural del Estado de México, estado de México, México

    Google Scholar 

  • Ramírez RK (2018) Transferencia nutrimental y crecimiento de Abies religiosa (Kunth) Schltdl. et. Cham con dos inóculos de hongos ectomicorrízicos, en dos sustratos (in Spanish). Thesis of Master Science, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, estado de México, México

    Google Scholar 

  • Ramírez-Herrera C, Vargas-Hernández JJ, López-Upton J (2005) Distribución y Conservación de las poblaciones naturales de Pinus greggii. Acta Botánica Mexicana 72:1–16

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems - a journey toward relevance? New Phytol 157:475–492

    Article  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H et al (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rentería-Chávez MC, Pérez Moreno J, Cetina-Alcala VM et al (2017) Transferencia de nutrientes y crecimiento de Pinus greggii Engelm. inoculado con hongos comestibles ectomicorrícicos en dos sustratos. Rev Argent Microbiol 49:93–104

    PubMed  Google Scholar 

  • Repác I (2011) Ectomycorrhizal inoculum and inoculation techniques. In: Rai M, Varma A (eds) Diversity and biotechnology of ectomycorrhizae. Soil biology, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-3-642-15196-5_3

    Chapter  Google Scholar 

  • Ríos-García U, Carrera MA, Pérez MJ et al (2017a) Potencial biotecnológico del hongo comestible ectomicorrízico Laccaria proxima en Pinus engelmanii. In: Primer Congreso Nacional de Recursos Naturales, Sistemas de Producción e Innovación Tecnológica, Oaxaca, México​, p 35

    Google Scholar 

  • Ríos-García U, Carrera-Martínez A, Leyva-López JC et al (2017b) Firs record of the ectomycorrhizal synthesis between Laccaria proxima and Quercus uxoris a vulnerable species of the moist montane cloudy forest of the mazatec región, Mexico. In: Pérez-Moreno J, Guerin-Laguette A (eds) Mushrooms, humans and nature in a changing world, Proceedings of the 9th International Workshop on Edible Mycorrhizal Mushrooms (IWEMM9) Colegio de Postgraduados and CONACYT, Texcoco, Mexico, p 134

    Google Scholar 

  • Rodríguez-Gutiérrez I, Ramírez-Martínez D, Jacob-Cervantes V et al (2017) Mycorrhization of Pinus montezumae with simpatric and allopatric edible ectomycorrhizal species of Laccaria spp. In: Pérez-Moreno J, Guerin-Laguette A (eds) Mushrooms, humans and nature in a changing world, Proceedings of the 9th International Workshop on Edible Mycorrhizal Mushrooms (IWEMM9) Colegio de Postgraduados and CONACYT, Texcoco, Mexico, p 137

    Google Scholar 

  • Rosales-Sánchez JC, Martínez RM, Fuentes GO et al (2017) Síntesis ectomicorrizica de Laccaria proxima, un hongo comestible silvestre ectomicorrizico y Pinus duranguensis. In: IV Encuentro Internacional sobre Biotecnología en la UATx, Tlaxcala. México, p 35

    Google Scholar 

  • Rosenberg KV, Dokter AM, Blancher PJ et al (2019) Declive of the North American avifauna. Science 366:120–124

    Article  CAS  PubMed  Google Scholar 

  • Sandoval GI (2010) Efecto de los hongos ectomicorrizógenos en el crecimiento y supervivencia de plántulas de Pinus hartwegii Lindl. y Abies religiosa (Kunth. et Cham.): Un enfoque para la restauración de ambientes deteriorados en la cuenca del Río Magdalena D.F (in Spanish). Thesis of Master Science. Universidad Nacional Autónoma de México. México

    Google Scholar 

  • Saint- Exupéry A de (1948) Citadelle. Gallimard, Paris

    Google Scholar 

  • Santiago-Hernández I, Peréz-Moreno J, Jiménez-Ruiz M et al (2017) Growth and nutrient content of Pinus ayacahuite inoculated with Suillus granulatus in the northern mountain range of Oaxaca, Mexico. In: Pérez-Moreno J, Guerin-Laguette A (eds) Mushrooms, humans and nature in a changing world, Proceedings of the 9th International Workshop on Edible Mycorrhizal Mushrooms (IWEMM9) Colegio de Postgraduados and CONACYT, Texcoco, Mexico, p 142

    Google Scholar 

  • Sharma SK, Gautam N (2015) Chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species. BioMed Research International 2015:1–12

    Google Scholar 

  • Sebastiana M, Duarte B, Monteiro F et al (2019) The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature. Plant Physiol Biochem 144:157–165. https://doi.org/10.1016/j.plaphy.2019.09.032

    Article  CAS  PubMed  Google Scholar 

  • Steidinger BS, Crowther TW et al (2019) Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569:404–413

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic Press, London, UK

    Google Scholar 

  • Svensen HH, Marit RB, Kyrre K (2019) The past as a mirror: deep time climate change exemplarity in the anthropocene. Culture Unbound 11:1–23. Available from http://www.cultureunbound.ep.liu.se

    Article  Google Scholar 

  • Turjaman M, Yutaka T, Hendrik S et al (2005) Inoculation with the ectomycorrhizal fungi Pisolithus arhizus and Scleroderma sp. improves early growth of Shorea pinanga nursery seedlings. New Forests 30:67–73

    Article  Google Scholar 

  • UNEP (2012) The emmissions gap report 2012. United Nations Environment Programme, Nairobi

    Google Scholar 

  • UNEP (2016) UNEP Frontiers 2016 Report: Emerging issues of environmental concern. United Nations Environment Programme, Nairobi

    Google Scholar 

  • USDA ARS (2019) National Genetic Resources Program: Germplasm Resources Information Network (GRIN). Available from https://www.ars-grin.gov/

  • Valencia AS, Flores-Franco G (2006) Catálogo de Autoridad Taxonómica del género Quercus, Fagaceae en México. Facultad de Ciencias, UNAM, Base de Datos SNIB-CONABIO proyecto CS008, Mexico

    Google Scholar 

  • Vidal O, Rendón-Salinas E (2014) Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biol Conserv 180:165–175

    Article  Google Scholar 

  • Villegas OJA (2014) Factores que influyen en la formación de esporomas y micorrización de dos hongos comestibles ectomicorrízicos asociados con un pino neotropical (in Spanish). Thesis of Master Science, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, estado de México, México

    Google Scholar 

  • Villegas-Olivera JA, Pérez-Moreno J, Mata G et al (2017) Type of lingt, basidiomata frequency and development of two species of edible ectomycorrhizal mushrooms associated with neotropical pines. In: Pérez-Moreno J, Guerin-Laguette A (eds) Mushrooms, humans and nature in a changing world, Proceedings of the 9th International Workshop on Edible Mycorrhizal Mushrooms (IWEMM9) Colegio de Postgraduados and CONACYT, Texcoco, Mexico, p 149

    Google Scholar 

  • Villegas-Olivera JA, Pérez MJ, Sánchez VG et al (2018) Inoculación de hongos comestibles ectomicorrízicos en Pinus oocarpa (Schiede ex Schltdl.) especie de importancia forestal en México. In: 1er Congreso Nacional de Investigación en Ciencia e Innovación de Tecnologías Productivas, Altamirano, Guerrero, México​, pp 59–69

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J et al (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wilson EO (1992) The diversity of life. Penguin Books, London

    Google Scholar 

  • World Bank (2016) World Development Indicators 2016. World Bank, Washington, DC. https://doi.org/10.1596/978–1-4648–0683–4

    Book  Google Scholar 

  • Zalasiewicz J, Mark WM, Smith AG et al (2008) Are we now living in the Anthropocene? GSA Today 18:4–8. https://doi.org/10.1130/GSAT01802A.1

    Article  Google Scholar 

  • Zohdy S, Schwartz TS, Oaks JR (2019) The coevolution effect as a driver of spillover. Trends in Parasitology 35:399–408

    Google Scholar 

  • Zuñiga CAJ (2018) Inoculación de Pinus cembroides Zucc. con un hongo ectomicorrízico comestible y una bacteria auxiliadora de la micorrización en dos sustratos (in Spanish). Thesis of Master Science, Postgrado en Edafología, Colegio de Postgraduados, Montecillo, estado de México, México

    Google Scholar 

Download references

Acknowledgements

The credit pictures are as follows: Fig. 3.1d is from Jazmín Cortes-Sarabia and Fig. 3.6e–g are from Violeta Carrasco-Hernández. All of the other figures are from the authors of this chapter. Jesús Pérez-Moreno acknowledges the financial support from CONACyT 2018-07-01EXTV and COMECyT EST2018-005 to develop a sabbatical stay at the Kunming Institute of Botany, Kunming, China. The authors acknowledge funding from the CONACyT project “Biotechnologies of highly-prized or bioculturally-important edible ectomycorrhizal mushrooms for reforestation with native Mexican trees using frontier scientific methodologies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Pérez-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Moreno, J., Martínez-Reyes, M., Hernández-Santiago, F., Ortiz-Lopez, I. (2020). Climate Change, Biotechnology, and Mexican Neotropical Edible Ectomycorrhizal Mushrooms. In: Pérez-Moreno, J., Guerin-Laguette, A., Flores Arzú, R., Yu, FQ. (eds) Mushrooms, Humans and Nature in a Changing World. Springer, Cham. https://doi.org/10.1007/978-3-030-37378-8_3

Download citation

Publish with us

Policies and ethics