Skip to main content

Cell-Free Hemoglobin: A New Therapeutic Target in Sepsis?

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2020

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1918 Accesses

Abstract

Sepsis is a heterogeneous clinical syndrome that has defied all attempts to identify effective pharmacologic therapies. A growing body of evidence suggests that an elevated level of circulating cell-free hemoglobin is a feature of some, but not all patients with sepsis. Cell-free hemoglobin can cause tissue injury and organ dysfunction through a variety of injurious mechanisms including scavenging of nitric oxide, pro-inflammatory signaling, and oxidative injury. The kidney and lung appear to be particularly vulnerable to cell-free hemoglobin-mediated injury. A number of potential therapies to target cell-free hemoglobin in sepsis have been identified including haptoglobin, hemopexin, and acetaminophen. Early phase clinical trials suggest that acetaminophen may have beneficial effects on lipid peroxidation and kidney function in patients with sepsis. Measurement of cell-free hemoglobin levels at the bedside has the potential to facilitate predictive enrichment for future therapeutic trials of cell-free hemoglobin-targeted therapeutics in sepsis such that only patients with elevated cell-free hemoglobin who would be most likely to benefit would be enrolled. However, rapid, accurate bedside tests for plasma cell-free hemoglobin will need to be developed in order for such trials to move forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–54.

    Article  PubMed  Google Scholar 

  2. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Prescott HC, Calfee CS, Thompson BT, Angus DC, Liu VX. Toward smarter lumping and smarter splitting: rethinking strategies for sepsis and acute respiratory distress syndrome clinical trial design. Am J Respir Crit Care Med. 2016;194:147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  4. US Food and Drug Administration. Enrichment Strategies for Clinical Trials to Support Determination of Effectiveness of Human Drugs and Biological Products: Guidance for Industry. Available at https://www.fda.gov/media/121320/download. Accessed 7 Sept 2019.

  5. Janz DR, Bastarache JA, Peterson JF, et al. Association between cell-free hemoglobin, acetaminophen, and mortality in patients with sepsis: an observational study. Crit Care Med. 2013;41:784–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Adamzik M, Hamburger T, Petrat F, et al. Free hemoglobin concentration in severe sepsis: methods of measurement and prediction of outcome. Crit Care. 2012;16:R125.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cooper GS, Havlir DS, Shlaes DM, Salata RA. Polymicrobial bacteremia in the late 1980s: predictors of outcome and review of the literature. Medicine (Baltimore). 1990;69:114–23.

    Article  CAS  Google Scholar 

  8. Larsen R, Gozzelino R, Jeney V, et al. A central role for free heme in the pathogenesis of severe sepsis. Sci Transl Med. 2010;2:51ra71.

    Article  PubMed  CAS  Google Scholar 

  9. Effenberger-Neidnicht K, Hartmann M. Mechanisms of hemolysis during sepsis. Inflammation. 2018;41:1569–81.

    Article  PubMed  CAS  Google Scholar 

  10. Janz DR, Bastarache JA, Sills G, et al. Association between haptoglobin, hemopexin and mortality in adults with sepsis. Crit Care. 2013;17:R272.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood. 2013;121:1276–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Boutaud O, Moore KP, Reeder BJ, et al. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc Natl Acad Sci U S A. 2010;107:2699–704.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shaver CM, Wickersham N, McNeil JB, et al. Cell-free hemoglobin promotes primary graft dysfunction through oxidative lung endothelial injury. JCI Insight. 2018;3:e98546.

    Article  PubMed Central  Google Scholar 

  14. Shaver CM, Upchurch CP, Janz DR, et al. Cell-free hemoglobin: a novel mediator of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;310:L532–41.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mumby S, Ramakrishnan L, Evans TW, Griffiths MJ, Quinlan GJ. Methemoglobin-induced signaling and chemokine responses in human alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2014;306:L88–100.

    Article  PubMed  CAS  Google Scholar 

  16. Chintagari NR, Jana S, Alayash AI. Oxidized ferric and ferryl forms of hemoglobin trigger mitochondrial dysfunction and injury in alveolar type I cells. Am J Respir Cell Mol Biol. 2016;55:288–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Plewes K, Kingston HWF, Ghose A, et al. Cell-free hemoglobin mediated oxidative stress is associated with acute kidney injury and renal replacement therapy in severe falciparum malaria: an observational study. BMC Infect Dis. 2017;17:313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shaver CM, Paul MG, Putz ND, et al. Cell-free hemoglobin augments acute kidney injury during experimental sepsis. Am J Physiol Renal Physiol. 2019;317:F922–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Alobaidi R, Basu RK, Goldstein SL, Bagshaw SM. Sepsis-associated acute kidney injury. Semin Nephrol. 2015;35:2–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zarbock A, Gomez H, Kellum JA. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care. 2014;20:588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baek JH, D'Agnillo F, Vallelian F, et al. Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy. J Clin Invest. 2012;122:1444–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Baek JH, Zhang X, Williams MC, et al. Extracellular Hb enhances cardiac toxicity in endotoxemic guinea pigs: protective role of haptoglobin. Toxins (Basel). 2014;6:1244–59.

    Article  CAS  Google Scholar 

  23. Graw JA, Mayeur C, Rosales I, et al. Haptoglobin or hemopexin therapy prevents acute adverse effects of resuscitation after prolonged storage of red cells. Circulation. 2016;134:945–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Remy KE, Cortes-Puch I, Solomon SB, et al. Haptoglobin improves shock, lung injury, and survival in canine pneumonia. JCI Insight. 2018;3:e123013.

    Article  PubMed Central  Google Scholar 

  25. MohanKumar K, Namachivayam K, Song T, et al. A murine neonatal model of necrotizing enterocolitis caused by anemia and red blood cell transfusions. Nat Commun. 2019;10:3494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tanaka K, Kanamori Y, Sato T, et al. Administration of haptoglobin during cardiopulmonary bypass surgery. ASAIO Trans. 1991;37:M482–3.

    PubMed  CAS  Google Scholar 

  27. Nomura K, Hashimoto K, Miyamoto N, et al. Hemolytic renal damage during cardiopulmonary bypass and the preventive effect of haptoglobin. Jpn J Cadiovasc Surg. 1993;22:404–8.

    Article  Google Scholar 

  28. Kubota K, Egi M, Mizobuchi S. Haptoglobin administration in cardiovascular surgery patients: its association with the risk of postoperative acute kidney injury. Anesth Analg. 2017;124:1771–6.

    Article  PubMed  CAS  Google Scholar 

  29. Miller YI, Smith A, Morgan WT, Shaklai N. Role of hemopexin in protection of low-density lipoprotein against hemoglobin-induced oxidation. Biochemistry (Mosc). 1996;35:13112–7.

    Article  CAS  Google Scholar 

  30. Jung JY, Kwak YH, Kim KS, Kwon WY, Suh GJ. Change of hemopexin level is associated with the severity of sepsis in endotoxemic rat model and the outcome of septic patients. J Crit Care. 2015;30:525–30.

    Article  PubMed  CAS  Google Scholar 

  31. Elphinstone RE, Conroy AL, Hawkes M, et al. Alterations in systemic extracellular heme and hemopexin are associated with adverse clinical outcomes in Ugandan children with severe malaria. J Infect Dis. 2016;214:1268–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lin T, Maita D, Thundivalappil SR, et al. Hemopexin in severe inflammation and infection: mouse models and human diseases. Crit Care. 2015;19:166.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jung JY, Kwak YH, Chang I, et al. Protective effect of hemopexin on systemic inflammation and acute lung injury in an endotoxemia model. J Surg Res. 2017;212:15–21.

    Article  PubMed  CAS  Google Scholar 

  34. Ouellet M, Percival MD. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms. Arch Biochem Biophys. 2001;387:273–80.

    Article  PubMed  CAS  Google Scholar 

  35. Anderson BJ. Paracetamol (Acetaminophen): mechanisms of action. Paediatr Anaesth. 2008;18:915–21.

    Article  PubMed  Google Scholar 

  36. Gonzalez-Sanchez MI, Manjabacas MC, Garcia-Carmona F, Valero E. Mechanism of acetaminophen oxidation by the peroxidase-like activity of methemoglobin. Chem Res Toxicol. 2009;22:1841–50.

    Article  PubMed  CAS  Google Scholar 

  37. Boutaud O, Roberts LJ 2nd. Mechanism-based therapeutic approaches to rhabdomyolysis-induced renal failure. Free Radic Biol Med. 2011;51:1062–7.

    Article  PubMed  CAS  Google Scholar 

  38. Szakmany T, Hauser B, Radermacher P. N-acetylcysteine for sepsis and systemic inflammatory response in adults. Cochrane Database Syst Rev. 2012:CD006616.

    Google Scholar 

  39. Roberts LJ 2nd, Oates JA, Linton MF, et al. The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radic Biol Med. 2007;43:1388–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Blumberg JB, Frei B. Why clinical trials of vitamin E and cardiovascular diseases may be fatally flawed. Commentary on “The relationship between dose of vitamin E and suppression of oxidative stress in humans”. Free Radic Biol Med. 2007;43:1374–6.

    Article  PubMed  CAS  Google Scholar 

  41. Van Driest SL, Jooste EH, Shi Y, et al. Association between early postoperative acetaminophen exposure and acute kidney injury in pediatric patients undergoing cardiac surgery. JAMA Pediatr. 2018;172:655–63.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Janz DR, Bastarache JA, Rice TW, et al. Randomized, placebo-controlled trial of acetaminophen for the reduction of oxidative injury in severe sepsis: the Acetaminophen for the Reduction of Oxidative Injury in Severe Sepsis trial. Crit Care Med. 2015;43:534–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Simpson SA, Zaccagni H, Bichell DP, et al. Acetaminophen attenuates lipid peroxidation in children undergoing cardiopulmonary bypass. Pediatr Crit Care Med. 2014;15:503–10.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Billings FT, Petracek MR, Roberts LJ 2nd, Pretorius M. Perioperative intravenous acetaminophen attenuates lipid peroxidation in adults undergoing cardiopulmonary bypass: a randomized clinical trial. PLoS One. 2015;10:e0117625.

    Article  PubMed  CAS  Google Scholar 

  45. Plewes K, Kingston HWF, Ghose A, et al. Acetaminophen as a renoprotective adjunctive treatment in patients with severe and moderately severe Falciparum malaria: a randomized, controlled, open-label trial. Clin Infect Dis. 2018;67:991–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kuck JL, Bastarache JA, Shaver CM, et al. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin. Biochem Biophys Res Commun. 2018;495:433–7.

    Article  PubMed  CAS  Google Scholar 

  47. Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin c, and thiamine for the treatment of severe sepsis and septic shock: A retrospective before-after study. Chest. 2017;151:1229–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Ware .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ware, L.B. (2020). Cell-Free Hemoglobin: A New Therapeutic Target in Sepsis?. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2020. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-37323-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37323-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37322-1

  • Online ISBN: 978-3-030-37323-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics