Skip to main content

Forecasting of Customer Behavior Using Time Series Analysis

  • Conference paper
  • First Online:
Data Science: From Research to Application (CiDaS 2019)

Abstract

Forecasting future behavior of customers has significant importance in businesses. Consequently, data mining and prediction tools are increasingly utilized by firms to predict customer behavior and to devise effective marketing programs. When dealing with multiple time series data, we encounter with the problem that how to use those time series to forecast the behavior of all customers more accurately. In this study we proposed a methodology to create customer segments based on past data, create Segment-Wise forecasts and then discover the future behavior of each segment. The proposed methodology utilizes existing data mining and prediction tools including time series clustering and forecasting, but combines them in a unique way that results in higher level models in terms of accuracy than baseline model. The proposed methodology has substantial application in marketing for any firm in any domain where there is a need to forecast future behavior of different customer group in an effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, V., Reinartz, W.: Customer Relationship Management: Concept, Strategy, and Tools. Springer, Heidelberg (2018)

    Book  Google Scholar 

  2. Chiang, W.-Y.: Applying data mining for online CRM marketing strategy: an empirical case of coffee shop industry in Taiwan. Br. Food J. 120(3), 665–675 (2018)

    Article  Google Scholar 

  3. Yildirim, P., Birant, D., Alpyildiz, T.: Data mining and machine learning in textile industry. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 8(1), e1228 (2018)

    Google Scholar 

  4. Lessmann, S., et al.: Targeting customers for profit: an ensemble learning framework to support marketing decision making (2018)

    Google Scholar 

  5. Duan, Y., Cao, G., Edwards, J.S.: Understanding the impact of business analytics on innovation. Eur. J. Oper. Res. 281, 673–686 (2018)

    Article  Google Scholar 

  6. Grover, V., et al.: Creating strategic business value from big data analytics: a research framework. J. Manag. Inf. Syst. 35(2), 388–423 (2018)

    Article  Google Scholar 

  7. Hughes, A.: Strategic Database Marketing: The Masterplan for Starting and Managing a Profitable, Customer-Based Marketing Program, 4th edn. McGraw-Hill Companies, Incorporated, USA (2011)

    Google Scholar 

  8. Box, G.E., et al.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)

    Google Scholar 

  9. Brockwell, P.J., Davis, R.A., Calder, M.V.: Introduction to Time Series and Forecasting. Springer, Heidelberg (2002)

    Book  Google Scholar 

  10. Khajvand, M., Tarokh, M.J.: Estimating customer future value of different customer segments based on adapted RFM model in retail banking context. Proc. Comput. Sci. 3, 1327–1332 (2011)

    Article  Google Scholar 

  11. Hosseini, M., Shabani, M.: New approach to customer segmentation based on changes in customer value. J. Mark. Anal. 3(3), 110–121 (2015)

    Article  Google Scholar 

  12. Parvaneh, A., Abbasimehr, H., Tarokh, M.J.: Integrating AHP and data mining for effective retailer segmentation based on retailer lifetime value. J. Optim. Ind. Eng. 5(11), 25–31 (2012)

    Google Scholar 

  13. Parvaneh, A., Tarokh, M., Abbasimehr, H.: Combining data mining and group decision making in retailer segmentation based on LRFMP variables. Int. J. Ind. Eng. Prod. Res. 25(3), 197–206 (2014)

    Google Scholar 

  14. Hu, Y.-H., Yeh, T.-W.: Discovering valuable frequent patterns based on RFM analysis without customer identification information. Knowl.-Based Syst. 61, 76–88 (2014)

    Article  Google Scholar 

  15. You, Z., et al.: A decision-making framework for precision marketing. Expert Syst. Appl. 42(7), 3357–3367 (2015)

    Article  Google Scholar 

  16. Abirami, M., Pattabiraman, V.: Data mining approach for intelligent customer behavior analysis for a retail store, pp. 283–291. Springer, Cham (2016)

    Chapter  Google Scholar 

  17. Serhat, P., Altan, K., Erhan, E.P.: LRFMP model for customer segmentation in the grocery retail industry: a case study. Mark. Intell. Plann. 35(4), 544–559 (2017)

    Article  Google Scholar 

  18. Doğan, O., Ayçin, E., Bulut, Z.A.: Customer segmentation by using RFM model and clustering methods: a case study in retail industry. Int. J. Contemp. Econ. Adm. Sci. 8(1), 1–19 (2018)

    Google Scholar 

  19. Akhondzadeh-Noughabi, E., Albadvi, A.: Mining the dominant patterns of customer shifts between segments by using top-k and distinguishing sequential rules. Manag. Decis. 53(9), 1976–2003 (2015)

    Article  Google Scholar 

  20. Song, M., et al.: Statistics-based CRM approach via time series segmenting RFM on large scale data. Knowl.-Based Syst. 132, 21–29 (2017)

    Article  Google Scholar 

  21. Dursun, A., Caber, M.: Using data mining techniques for profiling profitable hotel customers: an application of RFM analysis. Tour. Manag. Perspect. 18, 153–160 (2016)

    Article  Google Scholar 

  22. Le, D.D., Gross, G., Berizzi, A.: Probabilistic modeling of multisite wind farm production for scenario-based applications. IEEE Trans. Sustain. Energy 6(3), 748–758 (2015)

    Article  Google Scholar 

  23. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques: Concepts and Techniques. Elsevier Science, Amsterdam (2011)

    MATH  Google Scholar 

  24. Witten, I.H., et al.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    MATH  Google Scholar 

  25. Tan, P.-N.: Introduction to Data Mining. Pearson Education India (2006)

    Google Scholar 

  26. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering – a decade review. Inf. Syst. 53, 16–38 (2015)

    Article  Google Scholar 

  27. Montero, P., Vilar, J.A.: TSclust: an R package for time series clustering. J. Stat. Softw. 62(1), 1–43 (2014)

    Article  Google Scholar 

  28. Murtagh, F., Legendre, P.: Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J. Classif. 31(3), 274–295 (2014)

    Article  MathSciNet  Google Scholar 

  29. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Sig. Process. 26(1), 43–49 (1978)

    Article  Google Scholar 

  30. Anantasech, P., Ratanamahatana, C.A.: Enhanced weighted dynamic time warping for time series classification. In: Third International Congress on Information and Communication Technology, pp. 655–664. Springer (2019)

    Google Scholar 

  31. Mueen, A., et al.: Speeding up dynamic time warping distance for sparse time series data. Knowl. Inf. Syst. 54(1), 237–263 (2018)

    Article  MathSciNet  Google Scholar 

  32. Chouakria, A.D., Nagabhushan, P.N.: Adaptive dissimilarity index for measuring time series proximity. Adv. Data Anal. Classif. 1(1), 5–21 (2007)

    Article  MathSciNet  Google Scholar 

  33. Batista, G.E., et al.: CID: an efficient complexity-invariant distance for time series. Data Min. Knowl. Discov. 28(3), 634–669 (2014)

    Article  MathSciNet  Google Scholar 

  34. Cen, Z., Wang, J.: Forecasting neural network model with novel CID learning rate and EEMD algorithms on energy market. Neurocomputing. 317, 168–178 (2018)

    Article  Google Scholar 

  35. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  36. Ramos, P., Santos, N., Rebelo, R.: Performance of state space and ARIMA models for consumer retail sales forecasting. Robot. Comput.-Integr. Manuf. 34, 151–163 (2015)

    Article  Google Scholar 

  37. Martínez, F., et al.: Dealing with seasonality by narrowing the training set in time series forecasting with kNN. Expert Syst. Appl. 103, 38–48 (2018)

    Article  Google Scholar 

  38. Hyndman, R., et al.: Forecast: forecasting functions for time series and linear models. In: R Package Version 8.4 (2018)

    Google Scholar 

  39. Desgraupes, B.: Clustering indices, vol. 1, p. 34. University of Paris Ouest-Lab Modal’X (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Abbasimehr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbasimehr, H., Shabani, M. (2020). Forecasting of Customer Behavior Using Time Series Analysis. In: Bohlouli, M., Sadeghi Bigham, B., Narimani, Z., Vasighi, M., Ansari, E. (eds) Data Science: From Research to Application. CiDaS 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-37309-2_15

Download citation

Publish with us

Policies and ethics