Skip to main content

Optical Properties

Fundamental Absorption Edge and Emission Properties of β-Ga2O3

  • Chapter
  • First Online:
Gallium Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 293))

  • 2526 Accesses

Abstract

This chapter provides fundamental optical properties of β-Ga2O3. Valence band ordering was investigated by polarized transmittance and reflectance measurements. Anisotropic optical properties were also investigated by spectroscopic ellipsometry measurements. The optical anisotropy in a biaxial crystal as well as the gradual increase in the absorption coefficient were recognized as origins of the scattering in optical bandgap energies in a range 4.5–5.0 eV. Temperature-dependent exciton resonance energies were studied by using polarized reflectance measurement. The large changes in the exciton resonance energies with temperature were found to be originated from the exciton—longitudinal optical phonon interaction. Correlation between blue luminescence (BL) intensity and formation energy of oxygen vacancy (VO) was found by measuring temperature-dependent cathodoluminescence spectra. Suppression of the BL band in the heavily nitrogen-doped epitaxial films was shown as an evidence for the decrease in the VO concentration by N-doping and resultant high resistivity in the N-doped epitaxial films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Geller, J. Chem. Phys. 33, 676 (1960)

    Article  CAS  Google Scholar 

  2. H.H. Tippins, Phys. Rev. 140, A316 (1965)

    Article  Google Scholar 

  3. T. Matsumoto, M. Aoki, A. Kinoshita, T. Aono, Jpn. J. Appl. Phys. 13, 1578 (1974)

    Article  CAS  Google Scholar 

  4. N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Appl. Phys. Lett. 71, 933 (1997)

    Article  CAS  Google Scholar 

  5. M. Passlack, E.F. Schubert, W.S. Hobson, M. Hong, N. Moriya, S.N.G. Chu, K. Konstadinidis, J.P. Mannaerts, M.L. Schnoes, G.J. Zydzik, J. Appl. Phys. 77, 686 (1995)

    Article  CAS  Google Scholar 

  6. M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77, 4166 (2000)

    Article  CAS  Google Scholar 

  7. E.G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, Appl. Phys. Lett. 88, 031105 (2006)

    Article  CAS  Google Scholar 

  8. T. Oshima, T. Okuno, S. Fujita, Jpn. J. Appl. Phys. 46, 7217 (2007)

    Article  CAS  Google Scholar 

  9. L. Binet, D. Gourier, C. Minot, J. Solid State Chem. 113, 420 (1994)

    Article  CAS  Google Scholar 

  10. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, M. Higashiwaki, Jpn. J. Appl. Phys. Part 1 54, 112601 (2015)

    Article  CAS  Google Scholar 

  11. C. Sturm, J. Furthműller, F. Bechstedt, R. Schmidt-Grund, M. Grundmann, APL Mater. 3, 106106 (2015)

    Article  CAS  Google Scholar 

  12. C. Sturm, R. Schmidt-Grund, C. Kranert, J. Furthműller, F. Bechstedt, M. Grundmann, Phys. Rev. B 94, 035148 (2016)

    Article  CAS  Google Scholar 

  13. A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, M. Schubert, Phys. Rev. B 96, 245205 (2017)

    Article  Google Scholar 

  14. K. Yamaguchi, Solid State Commun. 131, 739 (2004)

    Article  CAS  Google Scholar 

  15. H. He, M.A. Blanco, R. Pandey, Appl. Phys. Lett. 88, 261904 (2006)

    Article  CAS  Google Scholar 

  16. H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rérat, Phys. Rev. B 74, 195123 (2006)

    Article  CAS  Google Scholar 

  17. J.B. Varley, J.R. Weber, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 97, 142106 (2010) [108, 039901 (2016)]

    Google Scholar 

  18. J.B. Varley, A. Schleife, Semicond. Sci. Technol. 30, 024010 (2015)

    Article  CAS  Google Scholar 

  19. H. Peelaers, C.G. Van de Walle, Phys. Status Solidi B 252, 828 (2015)

    Article  CAS  Google Scholar 

  20. J. Furthműller, F. Bechstedt, Phys. Rev. B 93, 115204 (2016)

    Article  CAS  Google Scholar 

  21. K.A. Mengle, G. Shi, D. Bayerl, E. Kioupakis, Appl. Phys. Lett. 109, 212104 (2016)

    Article  CAS  Google Scholar 

  22. T. Harwig, F. Kellendonk, S. Slappendel, J. Phys. Chem. Solids 39, 675 (1978)

    Article  CAS  Google Scholar 

  23. T. Harwig, F. Kellendonk, J. Solid State Chem. 24, 255 (1978)

    Article  CAS  Google Scholar 

  24. L. Binet, J. Gourier, J. Phys. Chem. Solids 59, 1241 (1998)

    Article  CAS  Google Scholar 

  25. E.G. Víllora, T. Atou, T. Sekiguchi, T. Sugawara, M. Kikuchi, T. Fukuda, Solid State Commun. 120, 455 (2001)

    Article  Google Scholar 

  26. K. Shimamura, E.G. Víllora, T. Ujiie, K. Aoki, Appl. Phys. Lett. 92, 201914 (2008)

    Article  CAS  Google Scholar 

  27. T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, T. Honda, Appl. Phys. Lett. 103, 041910 (2013)

    Article  CAS  Google Scholar 

  28. S. Yamaoka, M. Nakayama, Phys. Status Solidi C 13, 93 (2016)

    Article  CAS  Google Scholar 

  29. S. Yamaoka, Y. Furukawa, M. Nakayama, Phys. Rev. B 95, 094304 (2017)

    Article  Google Scholar 

  30. J.B. Verley, A. Janotti, C. Franchini, C.G. Van de Walle, Phys. Rev. B 85, 081109 (2012)

    Article  CAS  Google Scholar 

  31. T.G. Castner, W. Könzig, J. Phys. Chem. Solids 3, 178 (1957)

    Article  CAS  Google Scholar 

  32. Y. Toyozawa, Optical Process in Solids (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  33. T. Onuma, Y. Nakata, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, S. Yamakoshi, M. Higashiwaki, J. Appl. Phys. 124, 075103 (2018)

    Article  CAS  Google Scholar 

  34. Z. Zhang, E. Farzana, A.R. Arehart, S.A. Ringel, Appl. Phys. Lett. 108, 052105 (2016)

    Article  CAS  Google Scholar 

  35. Y. Nakano, ECS J. Solid State Sci. Technol. 6, P615 (2017)

    Article  CAS  Google Scholar 

  36. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, M. Higashiwaki, Jpn. J. Appl. Phys. 55, 1202B2 (2016)

    Google Scholar 

  37. T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, M. Higashiwaki, Appl. Phys. Lett. 108, 101904 (2016)

    Article  CAS  Google Scholar 

  38. E.G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 270, 420 (2004)

    Article  CAS  Google Scholar 

  39. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, Jpn. J. Appl. Phys. 55 1202A2 (2016)

    Google Scholar 

  40. Y. Nakata, T. Kamimura, A. Kuramata, S. Yamakoshi, M. Higashiwaki, in 65th The Japan Society of Applied Physics Spring Meeting, 2018, No. 19p-P11-18 [in Japanese]

    Google Scholar 

  41. T. Kamimura, Y. Nakata, A. Kuramata, S. Yamakoshi, M. Higashiwaki, 2nd International Workshop on Gallium Oxide and Related Materials, Parma, Italy, September 13 (2017), No. O2

    Google Scholar 

  42. M.H. Wong, C.-H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, M. Higashiwaki, Appl. Phys. Lett. 113, 102103 (2018)

    Google Scholar 

  43. M.H. Wong, K. Goto, H. Murakami, Y. Kumagai, M. Higashiwaki, IEEE Electron Device Lett. 40, 431 (2019)

    Google Scholar 

  44. P. Hovington, D. Drouin, R. Gauvin, Scanning 19, 1 (1997)

    Article  CAS  Google Scholar 

  45. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, Scanning 29, 92 (2007)

    Article  CAS  Google Scholar 

  46. T. Onuma, T. Yamaguchi, T. Honda, Phys. Status Solidi C 10, 869 (2013)

    Article  CAS  Google Scholar 

  47. F.A. Cotton, Chemical Applications of Group Theory, 2nd edn. (Wiley, New York, 1971)

    Google Scholar 

  48. C.F. Klingshirn, Semiconductor Optics, 4th edn. (Springer, Heidelberg, 2012)

    Google Scholar 

  49. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th expanded edn. (Cambridge University Press, Cambridge, U.K., 1999)

    Google Scholar 

  50. M. Dressel, B. Gompf, D. Faltermeier, A.K. Tripathi, J. Pflaum, M. Schubert, Opt. Express 16, 19770 (2008)

    Article  CAS  Google Scholar 

  51. G.E. Jellison Jr., M.A. McGuire, L.A. Boatner, J.D. Budai, E.D. Specht, D.J. Singh, Phys. Rev. B 84, 195439 (2011)

    Article  CAS  Google Scholar 

  52. J.A. Woollam Co., Inc., Guide to Using WVASE32

    Google Scholar 

  53. H. Fujiwara, Spectroscopic Ellipsometry, 2nd edn. (Maruzen, Tokyo, 2011)

    Google Scholar 

  54. M. Schubert, Phys. Rev. B 53, 4265 (1996)

    Article  CAS  Google Scholar 

  55. M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures (Springer, Heidelberg, 2004)

    Google Scholar 

  56. M. Schubert, R. Korlacki, S. Knight, T. Hofmann, S. Schöche, V. Darakchieva, E. Janzén, B. Monemar, D. Gogova, Q.-T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, K. Goto, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Phys. Rev. B 93, 125209 (2016)

    Article  CAS  Google Scholar 

  57. M. Cardona, Modulation Spectroscopy (Academic, New York, 1969)

    Google Scholar 

  58. D.E. Aspnes, Surf. Sci. 37, 418 (1973)

    Article  CAS  Google Scholar 

  59. Y.P. Varshni, Physica 34, 149 (1967)

    Article  CAS  Google Scholar 

  60. Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, T. Luo, Appl. Phys. Lett. 106, 111909 (2015)

    Article  CAS  Google Scholar 

  61. K.P. O’Donnell, X. Chen, Appl. Phys. Lett. 58, 2924 (1991)

    Google Scholar 

  62. S. Rudin, T.L. Reinecke, B. Segall, Phys. Rev. B 42, 11218 (1990)

    Article  CAS  Google Scholar 

  63. D. Dohy, G. Lucazeau, A. Revcolevschi, J. Solid State Chem. 45, 180 (1982)

    Article  CAS  Google Scholar 

  64. T. Onuma, S. Fujioka, T. Yamaguchi, Y. Itoh, M. Higashiwaki, K. Sasaki, T. Masui, T. Honda, J. Cryst. Growth 401, 330 (2014)

    Article  CAS  Google Scholar 

  65. H. Haug, S.W. Koch, Quantum Theory of The Optical and Electronic Properties of Semiconductors, 5th edn. (World Scientific, 2009)

    Google Scholar 

  66. M. Passlack, N.E.J. Hunt, E.F. Schubert, G.J. Zydzik, M. Hong, J.P. Mannaerts, R.L. Opila, R.J. Fischer, Appl. Phys. Lett. 64, 2715 (1994)

    Article  CAS  Google Scholar 

  67. K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, R. Fornari, J. Appl. Phys. 110, 063720 (2011)

    Article  CAS  Google Scholar 

  68. T. Oishi, Y. Koga, K. Harada, M. Kasu, Appl. Phys. Express 8, 031101 (2015)

    Article  CAS  Google Scholar 

  69. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, D. Jena, Appl. Phys. Lett. 109, 212101 (2016)

    Article  CAS  Google Scholar 

  70. E. Korhonen, F. Tuomisto, D. Gogova, G. Wagner, M. Baldini, Z. Galazka, R. Schewski, M. Albrecht, Appl. Phys. Lett. 106, 242103 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Dr. M. Higashiwaki for introducing and continuously giving me the opportunity to work on the β-Ga2O3. The author would like to thank Dr. K. Sasaki and Dr. A. Kuramata of Novel Crystal Technology Inc. and Dr. K. Goto, Dr. T. Masui, and Dr. S. Yamakoshi of Tamura Corporation for preparation of β-Ga2O3 crystals grown by the FZ and EFG methods. The author is grateful to Dr. Y. Nakata and Dr. M. Higashiwaki for growths of the series of N-doped epitaxial films by RF-MBE. The author would like to thank Dr. T. Sato of J. A. Woollam Japan Co., Inc., for technical support on the IRSE measurements. The author is truly grateful to Prof. T. Yamaguchi, Prof. T. Honda, Prof. Y. Itoh, Prof. H. Nagai, and Prof. M. Sato of Kogakuin University for their fruitful discussion and continuous support on the experiment. The author would like to acknowledge Prof. M. Sugiyama of Tokyo University of Science and Prof. S.F. Chichibu of Tohoku University for their continuous encouragements.

This work was supported in part by Grants-in-Aid for Scientific Research Nos. 25390071, 25289093, 25420341, and 25706020 from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeyoshi Onuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onuma, T. (2020). Optical Properties. In: Higashiwaki, M., Fujita, S. (eds) Gallium Oxide. Springer Series in Materials Science, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-37153-1_27

Download citation

Publish with us

Policies and ethics