Skip to main content

Electrical Properties 5

Defects in β-Ga2O3 Crystals and Their Influence on Schottky Barrier Diode Characteristics

  • Chapter
  • First Online:
Gallium Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 293))

  • 2477 Accesses

Abstract

β-Gallium oxide is promising for use in semiconductor power devices . First, the type and character of crystal defects , such as dislocations and voids, are described. Next, I describe the fabrication and measurement of Schottky barrier diodes (SBD) on the entire surface and investigate the relation between the leakage current and defects , as revealed mainly by the etch-pit method. The dislocations that appeared on the (010) surface became SBD leakage paths, whereas the dislocations on the (\( \bar{2}01 \)) and (001) surfaces apparently had no relation with the SBD leakage current. Voids that extend in [010] direction and appeared on all surface orientations did not affect the SBD leakage current .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.H. Tippins, Phys. Rev. 140, A316 (1965)

    Article  Google Scholar 

  2. M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77, 4166 (2000)

    Article  CAS  Google Scholar 

  3. W.S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H.G. Xing, A. Seabaugh, W. Haensch, C. Van de Walle, Z. Galazka, M. Albrecht, R. Fornari, D. Jena, Appl. Phys. Lett. 104, 203111 (2014)

    Article  Google Scholar 

  4. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, M. Higashiwaki, Jpn. J. Appl. Phys. 54, 112601 (2015)

    Article  Google Scholar 

  5. M. Higashiwaki, H. Murakami, Y. Kumagai, A. Kuramata, Jpn. J. Appl. Phys. 55, 1202A1 (2016)

    Google Scholar 

  6. S. Fujita, M. Oda, K. Kaneko, T. Hitora, Jpn. J. Appl. Phys. 55, 1202A3 (2016)

    Google Scholar 

  7. E.G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 270, 420 (2004)

    Article  Google Scholar 

  8. M. Saurat, A. Revcolevschi, Rev. Int. Hautes Temp. Refract. 8, 291 (1971)

    CAS  Google Scholar 

  9. N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997)

    Article  CAS  Google Scholar 

  10. J. Zhang, B. Li, C. Xia, G. Pei, Q. Deng, Z. Yang, W. Xu, H. Shi, F. Wu, Y. Wu, J. Xu, J. Phys. Chem. Solids 67, 2448 (2006)

    Article  CAS  Google Scholar 

  11. S. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, T. Shishido, Thin Solid Films 516, 5763 (2008)

    Article  CAS  Google Scholar 

  12. V.I. Vasyltsiv, Y.I. Rym, Y.M. Zakharko, Phys. Status Solidi B 195, 653 (1996)

    Article  CAS  Google Scholar 

  13. Y. Tomm, J.M. Ko, A. Yoshikawa, T. Fukuda, Sol. Energy Mater. Sol. Cells 66, 369 (2001)

    Article  CAS  Google Scholar 

  14. K. Shimamura, E.G. Villora, K. Matsumura, K. Aoki, M. Nakamura, S. Takekawa, N. Ichinose, K. Kitamura, Nihon Kessho Seicho Gakkaishi 33, 147 (2006). [in Japanese]

    Google Scholar 

  15. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Jpn. J. Appl. Phys. 47, 8506 (2008)

    Article  CAS  Google Scholar 

  16. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, Jpn. J. Appl. Phys. 55, 1202A2 (2016)

    Google Scholar 

  17. Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann, J. Cryst. Growth 404, 184 (2014)

    Article  CAS  Google Scholar 

  18. Y. Tomm, P. Reiche, D. Klimm, T. Fukuda, J. Cryst. Growth 220, 510 (2000)

    Article  CAS  Google Scholar 

  19. K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, R. Fornari, J. Appl. Phys. 110, 063720 (2011)

    Article  Google Scholar 

  20. K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, Y. Nakamura, J. Cryst. Growth 447, 36 (2016)

    Article  CAS  Google Scholar 

  21. J. Åhman, G. Svensson, J. Albertsson, Acta Crystallogr. Sect. C 52, 1336 (1996)

    Article  Google Scholar 

  22. S. Geller, J. Chem. Phys. 33, 676 (1960)

    Article  CAS  Google Scholar 

  23. K. Hanada, T. Moribayashi, T. Uematsu, S. Masuya, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, M. Kasu, Jpn. J. Appl. Phys. 55, 030303 (2016)

    Article  Google Scholar 

  24. K. Nakai, T. Nagai, K. Noami, T. Futagi, Jpn. J. Appl. Phys. 54, 051103 (2015)

    Article  Google Scholar 

  25. O. Ueda N. Ikenaga, K. Koshi, K. Iizuka, A. Kuramata, K. Hanada, T. Moribayashi, S. Yamakoshi, M. Kasu, Jpn. J. Appl. Phys. 55, 1202BD (2016)

    Google Scholar 

  26. K Hanada, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, M. Kasu, Jpn. J. Appl. Phys. 55, 1202BG (2016)

    Google Scholar 

  27. M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, Jpn. J. Appl. Phys. 56, 091101 (2017)

    Article  Google Scholar 

  28. T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, M. Kasu, Jpn. J. Appl. Phys. 56, 086501 (2017)

    Article  Google Scholar 

  29. E. Ohba, T. Kobayashi, M. Kado, K. Hoshikawa, Jpn. J. Appl. Phys. 55, 1202BF (2016)

    Google Scholar 

  30. M. Kasu, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, Jpn. J. Appl. Phys. 55, 1202BB (2016)

    Google Scholar 

Download references

Acknowledgements

I appreciate Drs. Kenji Hanada (Saga University, currently, Aichi Synchrotron), Takayoshi Oshima (Saga University, currently, Flosfia), Drs. Kohei Sasaki, Akito Kuramata (Novel Crystal Tech.), and Prof. Osamu Ueda (Meiji University) for their collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kasu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasu, M. (2020). Electrical Properties 5. In: Higashiwaki, M., Fujita, S. (eds) Gallium Oxide. Springer Series in Materials Science, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-37153-1_26

Download citation

Publish with us

Policies and ethics