Skip to main content

Deep Learning Enabled Physical Layer Security to Combat Eavesdropping in Massive MIMO Networks

  • Conference paper
  • First Online:
Second International Conference on Computer Networks and Communication Technologies (ICCNCT 2019)

Abstract

The physical layer security is a new security paradigm based on the principles of information theory. Several methods for achieving secrecy in physical layer is proposed. This paper proposes PLS based on the deep learning architecture. In which the deep learning model will transform the channel coefficients, the beamforming based on this transformed channel coefficients can be decoded using deep learning architecture in the receiver. The secrecy rate and secrecy outage probability of proposed system is compared with the zero forcing based beamforming and superior performance is verified by the simulation using popular deep learning library TensorFlow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong, L., Han, Z., Petropulu, A.P., Poor, H.V.: Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process. 58(3), 1875–1888 (2011)

    Article  MathSciNet  Google Scholar 

  2. Neethu, V., Ismayil Siyad, C.: Performance analysis of diversity techniques for OFDM system using trellis coded OAM-QAM union modulation. In: International Conference on Intelligent Computing and Control (I2C2) (2017)

    Google Scholar 

  3. Rathi, V., Andersson, M., Thobaben, R., Kliewer, J., Skoglund, M.: Performance analysis and design of two edge-type LDPC codes for the BEC wiretap channel. IEEE Trans. Inf. Theory 59(2), 1048–1064 (2013)

    Article  MathSciNet  Google Scholar 

  4. Wei, Y.-P., Ulukus, S.: Polar coding for the general wiretap channel with extensions to multiuser scenarios. IEEE J. Sel. Areas Commun. 34(2), 278–291 (2016)

    Article  Google Scholar 

  5. Andrews, J.G., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  6. Zhu, J., Schober, R., Bhargava, V.K.: Secure transmission in multi cell massive MIMO systems. IEEE Trans. Wirel. Commun. 13(9), 4766–4781 (2014)

    Article  Google Scholar 

  7. Wang, J., Lee, J., Wang, F., Querk, T.Q.S.: Jamming-aided secure communication in massive MIMO rician channels. IEEE Trans. Commun. 64(12), 6854–6868 (2015)

    Google Scholar 

  8. Zhu, J., Schober, R., Bhargava, V.K.: Linear precoding of data and artificial noise in secure massive MIMO systems. IEEE Trans. Wirel. Commun. 15(3), 2245–2261 (2016)

    Article  Google Scholar 

  9. Guo, K., Guo, Y., Ascheid, G.: Security-constrained power allocation in MU-massive-MIMO with distributed antennas. IEEE Trans. Wirel. Commun. 15(12), 8139–8153 (2016)

    Article  Google Scholar 

  10. Whu, Y., Wang, J.B., Wang, J., Schobber, R., Xiao, C.: Secure transmission with large number of antennas and finite alphabet inputs. IEEE Trans. Commun. 65(8), 3614–3628 (2017)

    Google Scholar 

  11. Zhu, F., Gao, F., Lin, H., Jin, S., Zhao, J., Qian, G.: Robust beamforming for physical layer security in BDMA massive MIMO. IEEE J. Sel. Areas Commun. 36(4), 775–787 (2018)

    Article  Google Scholar 

  12. Wang, S., Li, W., Lei, J.: Physical-Layer encryption in massive MIMO systems with spatial modulation. China Commun. 15(10), 159–171 (2018)

    Article  Google Scholar 

  13. Basciftci, Y.O., Koksal, C.E., Ashikhmin, A.: Physical layer security in massive MIMO (2016). https://arxiv.org/abs/1505.00396

  14. Im, S., Jeon, H., Choi, J., Ha, J.: Secret key agreement with large antenna arrays under the pilot contamination attack. IEEE Trans. Wirel. Commun. 14(12), 6579–6594 (2015)

    Article  Google Scholar 

  15. Wu, Y., Schober, R., Ng, D.W.K., Xiao, C., Caire, G.: Secure massive MIMO transmission with an active eavesdropper. IEEE Trans. Inf. Theory 62(7), 3880–3900 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ye, H., Li, G.Y., Juang, B.H.: Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel. Commun. Lett. 7(1), 114–117 (2018)

    Article  Google Scholar 

  17. Kato, N., et al.: The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wirel. Commun. 24(3), 146–153 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ismayil Siyad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siyad, C.I., Tamilselvan, S. (2020). Deep Learning Enabled Physical Layer Security to Combat Eavesdropping in Massive MIMO Networks. In: Smys, S., Senjyu, T., Lafata, P. (eds) Second International Conference on Computer Networks and Communication Technologies. ICCNCT 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-030-37051-0_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37051-0_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37050-3

  • Online ISBN: 978-3-030-37051-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics