Skip to main content

Performance Comparison of Machine Learning Algorithms in P300 Detection Using Balanced Mind-Speller Dataset

  • Conference paper
  • First Online:
Second International Conference on Computer Networks and Communication Technologies (ICCNCT 2019)

Abstract

Visual P300 mind-speller is a brain-computer interface that offers an easy and effective approach to track human brain responses. One major challenge in the design of this system is the unbalanced nature of its dataset, which can bias the classification process. In this work two distinct methods viz. nontarget undersampling and target oversampling were used to balance the mind-speller dataset. Since the choice of classification algorithm can impact the performance of mind-speller, the effect of dataset balancing was analyzed for a set of classifiers. The error rate, accuracy, true positive and false negative rates, true negative and false positive rates, positive predictive value, Matthews correlation coefficient, F-score, G-mean, and time consumption were the metrics used in this study. Among the various evaluated classifiers, k-nearest neighbor, support vector machine, and artificial neural network demonstrated significantly improved classification performance for the balanced (by target oversampling) mind-speller dataset while the Gaussian support vector machine yielded the highest metric scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev.: Comput. Stat. 2(4), 433–459 (2010). https://doi.org/10.1002/wics.101

  2. Afzal, W., Torkar, R., Feldt, R.: Resampling methods in software quality classification. Int. J. Softw. Eng. Knowl. Eng. 22(2), 203–223 (2012). https://doi.org/10.1142/S0218194012400037

    Article  Google Scholar 

  3. Alvarado-González, M., Garduño, E., Bribiesca, E., Yáñez-Suárez, O., Medina-Bañuelos, V.: P300 detection based on EEG shape features. Comput. Math. Methods Med. 2016, 1–14 (2016). https://doi.org/10.1155/2016/2029791

    Article  Google Scholar 

  4. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000). https://doi.org/10.1093/bioinformatics/16.5.412

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classif. Regres. Trees (2017). https://doi.org/10.1201/9781315139470

    Article  Google Scholar 

  6. Dagher, I.: Quadratic kernel-free non-linear support vector machine. J. Glob. Optim. 41(1), 15–30 (2008). https://doi.org/10.1007/s10898-007-9162-0

  7. Farwell, L., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988). https://doi.org/10.1016/0013-4694(88)90149-6

  8. Gentiletti, G., Gebhart, J., Acevedo, R., Yáñez-Suárez, O., Medina-Bañuelos, V.: Command of a simulated wheelchair on a virtual environment using a brain-computer interface. IRBM 30(5-6), 218–225 (2009). https://doi.org/10.1016/j.irbm.2009.10.006

  9. He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009). https://doi.org/10.1109/TKDE.2008.239

  10. Haider, A., Fazel-Rezai, R.: Application of P300 event-related potential in brain-computer interface. In: Event-Related Potentials and Evoked Potentials. InTech (2017). https://doi.org/10.5772/intechopen.69309

  11. Hardle, W.K., Simar, L.: Applied Multivariate Statistical Analysis. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-17229-8

  12. Kim, S., Magnani, A., Boyd, S.: Robust fisher discriminant analysis. In: Advances in Neural Information Processing Systems 18. Neural Information Processing Systems Foundation, Inc. (2005)

    Google Scholar 

  13. Krusienski, D., Sellers, E., McFarland, D., Vaughan, T., Wolpaw, J.: Toward enhanced P300 speller performance. J. Neurosci. Methods 167(1), 15–21 (2008). https://doi.org/10.1016/j.jneumeth.2007.07.017

  14. McCann, M.T., Thompson, D.E., Syed, Z.H., Huggins, J.E.: Electrode subset selection methods for an EEG-based P300 brain-computer interface. Disabil. Rehabil.: Assist. Technol. 10(3), 216–220 (may 2015). https://doi.org/10.3109/17483107.2014.884174

  15. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), pp. 41–48. IEEE, Piscataway (1999). https://doi.org/10.1109/NNSP.1999.788121

  16. Poulos, M., Rangoussi, N., Alexandris, M.: On the use of EEG features towards person identification via neural networks. Med. Inf. Internet Med. 26(1), 35–48 (2001). https://doi.org/10.1080/14639230118937

  17. Rakotomamonjy, A., Guigue, V.: BCI competition III: dataset II-ensemble of SVMs for BCI P300 Speller. IEEE Trans. Biomed. Eng. 55(3), 1147–1154 (2008). https://doi.org/10.1109/TBME.2008.915728

  18. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: AI 2006: Advances in Artificial Intelligence, pp. 1015–1021. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11941439_114

  19. Stapor, K.: Evaluating and comparing classifiers: review, some recommendations and limitations. In: Advances in Intelligent Systems and Computing, pp. 12–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59162-9_2

  20. Xu, G., Shen, F., Zhao, J.: The effect of methods addressing the class imbalance problem on P300 detection. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–5. IEEE, Aug 2013. https://doi.org/10.1109/IJCNN.2013.6706890

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thomas George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Philip, J.T., George, S.T., Subathra, M.S.P. (2020). Performance Comparison of Machine Learning Algorithms in P300 Detection Using Balanced Mind-Speller Dataset. In: Smys, S., Senjyu, T., Lafata, P. (eds) Second International Conference on Computer Networks and Communication Technologies. ICCNCT 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-030-37051-0_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37051-0_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37050-3

  • Online ISBN: 978-3-030-37051-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics