Skip to main content

Properties of Certain Classes of Semiclassical Orthogonal Polynomials

  • Conference paper
  • First Online:
Orthogonal Polynomials (AIMSVSW 2018)

Included in the following conference series:

  • 960 Accesses

Abstract

In this lecture we discuss properties of orthogonal polynomials for weights which are semiclassical perturbations of classical orthogonality weights. We use the moments, together with the connection between orthogonal polynomials and Painlevé equations to obtain explicit expressions for the recurrence coefficients of polynomials associated with a semiclassical Laguerre and a generalized Freud weight. We analyze the asymptotic behavior of generalized Freud polynomials in two different contexts. We show that unique, positive solutions of the nonlinear difference equation satisfied by the recurrence coefficients exist for all real values of the parameter involved in the semiclassical perturbation but that these solutions are very sensitive to the initial conditions. We prove properties of the zeros of semiclassical Laguerre and generalized Freud polynomials and determine the coefficients a n,n+j in the differential-difference equation

$$\displaystyle x\frac {d}{dx}P_n(x)=\sum _{k=-1}^{0}a_{n,n+k}P_{n+k}(x), $$

where P n(x) are the generalized Freud polynomials. Finally, we show that the only monic orthogonal polynomials \(\{P_n\}_{n=0}^{\infty }\) that satisfy

$$\displaystyle \pi (x)\mathcal {D}_{q}^2P_{n}(x)=\sum _{j=-2}^{2}a_{n,n+j}P_{n+j}(x),\; x=\cos \theta ,\;~ a_{n,n-2}\neq 0,~ n=2,3,\dots , $$

where π(x) is a polynomial of degree at most 4 and \(\mathcal {D}_{q}\) is the Askey–Wilson operator, are Askey–Wilson polynomials and their special or limiting cases, using this relation to derive bounds for the extreme zeros of Askey–Wilson polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W.A. Al-Salam, T.S. Chihara, Another characterization of the classical orthogonal polynomials. SIAM J. Math. Anal. 3, 65–70 (1972)

    Article  MathSciNet  Google Scholar 

  2. S.M. Alsulami, P. Nevai, J. Szabados, W. Van Assche, A family of nonlinear difference equations: existence, uniqueness, and asymptotic behavior of positive solutions. J. Approx. Theory 193, 39–55 (2015)

    Article  MathSciNet  Google Scholar 

  3. A. Arceo, E.J. Huertas, F. Marcellán, On polynomials associated with an Uvarov modification of a quartic potential Freud-like weight. Appl. Math. Comput. 281, 102–120 (2016)

    MathSciNet  MATH  Google Scholar 

  4. A.F. Beardon, The theorems of Stieltjes and Favard. Comput. Methods Funct. Theory 11, 247–262 (2011)

    Article  MathSciNet  Google Scholar 

  5. S. Bochner S, Über Sturm-Liouvillesche Polynomsysteme. Math. Z. 29(1), 730–736 (1929)

    Article  MathSciNet  Google Scholar 

  6. L. Boelen, W. Van Assche, Discrete Painlevé equations for recurrence relations of semiclassical Laguerre polynomials. Proc. Am. Math. Soc. 138, 1317–1331 (2011)

    Article  Google Scholar 

  7. Y. Chen, M.V. Feigin, Painlevé IV and degenerate Gaussian Unitary Ensembles. J. Phys. A Math. Gen. 39, 12381–12393 (2006)

    Article  Google Scholar 

  8. Y. Chen, M.E.H. Ismail, Ladder operators and differential equations for orthogonal polynomials. J. Phys. A 30, 7817–7829 (1997)

    Article  MathSciNet  Google Scholar 

  9. T.S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, New York, 1978). Reprinted by Dover Publications (2011)

    Google Scholar 

  10. A.S. Clarke, B. Shizgal, On the generation of orthogonal polynomials using asymptotic methods for recurrence coefficients. J. Comput. Phys. 104, 140–149 (1993)

    Article  MathSciNet  Google Scholar 

  11. P.A. Clarkson, K. Jordaan, The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation. Constr. Approx. 39, 223–254 (2014)

    Article  MathSciNet  Google Scholar 

  12. P.A. Clarkson, K. Jordaan, Properties of generalized Freud polynomials. J. Approx. Theory 225, 148–175 (2018)

    Article  MathSciNet  Google Scholar 

  13. P.A. Clarkson, K. Jordaan, A. Kelil, A generalized Freud weight. Stud. Appl. Math. 136, 288–320 (2016)

    Article  MathSciNet  Google Scholar 

  14. S. Datta, J. Griffin, A characterization of some q-orthogonal polynomials. Ramanujan J. 12(3), 425–437 (2006)

    Article  MathSciNet  Google Scholar 

  15. K. Driver, K. Jordaan, Bounds for extreme zeros of some classical orthogonal polynomials. J. Approx. Theory 164, 1200–1204 (2012)

    Article  MathSciNet  Google Scholar 

  16. J. Favard, Sur les polynomes de Tchebicheff. C. R. Acad. Sci. Paris 200, 2052–2053 (1935)

    MATH  Google Scholar 

  17. G. Filipuk, W. Van Assche, L. Zhang, The recurrence coefficients of semiclassical Laguerre polynomials and the fourth Painlevé equation. J. Phys. A 45, 205201 (2012)

    Article  MathSciNet  Google Scholar 

  18. G. Freud, On the coefficients in the recursion formulae of orthogonal polynomials. Proc. R. Irish Acad. Sect. A 76, 1–6 (1976)

    MathSciNet  MATH  Google Scholar 

  19. A.G. García, F. Marcellán, L. Salto, A distributional study of discrete classical orthogonal polynomials. J. Comput. Appl. Math. 57(1–2), 147–162 (1995)

    Article  MathSciNet  Google Scholar 

  20. W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen. Math. Z. 39(1), 634–638 (1935)

    Article  MathSciNet  Google Scholar 

  21. E. Hendriksen, H. van Rossum, Semi-classical orthogonal polynomials, in Polynômes Orthogonaux et Applications, ed. by C. Brezinski, A. Draux, A.P. Magnus, P. Maroni, A. Ronveaux. Lecture Notes in Mathematics, vol. 1171 (Springer, Berlin, 1985), pp. 354–361

    Google Scholar 

  22. M.E.H. Ismail, A generalization of a theorem of Bochner. J. Comput. Appl. Math. 159(2), 319–324 (2003)

    Article  MathSciNet  Google Scholar 

  23. M.E.H. Ismail, in Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, vol. 98 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  24. M.E.H. Ismail, X. Li, Bounds for extreme zeros of orthogonal polynomials. Proc. Am. Math. Soc. 115, 131–140 (1992)

    Article  MathSciNet  Google Scholar 

  25. J. Jost, Postmodern Aanalysis (Springer, Berlin, 2006)

    Google Scholar 

  26. T. Kasuga, R. Sakai, Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121, 13–53 (2003)

    Article  MathSciNet  Google Scholar 

  27. M. Kenfack Nangho, K. Jordaan, A characterization of Askey–Wilson polynomials. Proc. Am. Math. Soc. 147(6), 2465–2480 (2019)

    Article  MathSciNet  Google Scholar 

  28. M. Kenfack Nangho, K. Jordaan. Structure relations of classical orthogonal polynomials of the quadratic andq-quadratic variable. SIGMA, 14, 26 (2018)

    MATH  Google Scholar 

  29. R. Koekoek, P.A. Lesky, R.F. Swarttouw, in Hypergeometric Orthogonal Polynomials and Theirq-Analogues. Springer Monographs in Mathematics (Springer, Berlin, 2010)

    Google Scholar 

  30. J.S. Lew, D.A. Quarles, Nonnegative solutions of a nonlinear recurrence. J. Approx. Theory 38, 357–379 (1983)

    Article  MathSciNet  Google Scholar 

  31. F. Marcellán, R. Álvarez-Nodarse, On the “Favard theorem” and its extensions. J. Comput. Appl. Math. 127, 231–254 (2001)

    Article  MathSciNet  Google Scholar 

  32. I.P. Natanson, Konstruktive Funktionentheorie (Akademie-Verlag, Berlin, 1955)

    MATH  Google Scholar 

  33. P. Nevai, Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48, 3–167 (1986)

    Article  Google Scholar 

  34. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds), DLMF Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  35. J. Shohat, The Relation of the classical orthogonal polynomials to the polynomials of appell. Am. J. Math. 58, 453–464 (1936)

    Article  MathSciNet  Google Scholar 

  36. J. Shohat, Sur les polynômes orthogonaux généralises. C. R. Acad. Sci. Paris 207, 556–558 (1938)

    MATH  Google Scholar 

  37. M.H. Stone. Linear transformations in Hilbert space and their applications to analysis. AMS Colloquium Publications, vol. 15 (American Mathematical Society, Providence, 1932)

    Google Scholar 

  38. T.J. Stieltjes, Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8, J1–J122 (1894); A5–A47 (1895)

    Google Scholar 

  39. W. Van Assche, The impact of Stieltjes work on continued fractions and orthogonal polynomials, in Collected Papers, ed. by G. van Dijk (Springer, Berlin, 1993), pp. 5–37

    Google Scholar 

  40. L. Vinet, A. Zhedanov, Generalized Bochner theorem: characterization of the Askey–Wilson polynomials. J. Comput Appl. Math. 211(1), 45–56 (2008)

    Article  MathSciNet  Google Scholar 

  41. Z.T. Wen, R. Wong and S.X. Xu, Global asymptotics of orthogonal polynomials associated with a generalized Freud weight. Chin. Ann. Math. Ser. B, 39, 553–596 (2018)

    Article  MathSciNet  Google Scholar 

  42. A. Wintner, Spektraltheorie der unendlichen Matrizen (S. Hirzel, Leipzig, 1929)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Jordaan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jordaan, K. (2020). Properties of Certain Classes of Semiclassical Orthogonal Polynomials. In: Foupouagnigni, M., Koepf, W. (eds) Orthogonal Polynomials. AIMSVSW 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36744-2_18

Download citation

Publish with us

Policies and ethics