Skip to main content

Super-Resolution Network for General Static Degradation Model

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11954))

Included in the following conference series:

Abstract

Recent research on single image super-resolution (SISR) has made some progress. However, most previous SISR methods simply assume that a low-resolution (LR) image is bicubicly downsampled from a high-resolution (HR) image. when the LR images don’t follow this assumption, these previous methods will generate poor HR images that still retain the blur and noise information. To solve this problem, we propose the super-resolution network for general static degradation model (SR-GSD). Specifically, we propose degradation factors proposal Network (DFPN) which can automatically identify blur kernel and noise level, and furthermore, we utilize predicted degradation factors and the LR images to reconstruct the HR images in a high-resolution reconstruction network (HRN). Moreover, to simplify the training process, we unify the two-stages steps into a neural network and jointly optimize it through a multi-task loss function. Extensive experiments show that our SR-GSD can achieve satisfactory results on the general static degradation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study, pp. 1122–1131, July 2017. https://doi.org/10.1109/CVPRW.2017.150

  2. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single image super-resolution based on nonnegative neighbor embedding, September 2012. https://doi.org/10.5244/C.26.135

  3. Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_14

    Chapter  Google Scholar 

  4. Chetouani, A., Beghdadi, A., Deriche, M.: A new reference-free image quality index for blur estimation in the frequency domain. In: 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 155–159. IEEE (2009)

    Google Scholar 

  5. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)

    Google Scholar 

  6. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. CoRR abs/1501.00092 (2015)

    Google Scholar 

  7. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vision 40(1), 25–47 (2000). https://doi.org/10.1023/A:1026501619075

    Article  MATH  Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR abs/1703.06870 (2017). http://arxiv.org/abs/1703.06870

  9. Hu, X., Mu, H., Zhang, X., Wang, Z., Tan, T., Sun, J.: Meta-SR: a magnification-arbitrary network for super-resolution. CoRR abs/1903.00875 (2019). http://arxiv.org/abs/1903.00875

  10. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars (2015). https://doi.org/10.1109/CVPR.2015.7299156

  11. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. CoRR abs/1511.04587 (2015)

    Google Scholar 

  12. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. CoRR abs/1511.04491 (2015)

    Google Scholar 

  13. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution, July 2017

    Google Scholar 

  14. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423, July 2001. https://doi.org/10.1109/ICCV.2001.937655

  15. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497 (2015)

    Google Scholar 

  16. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, June 2016. https://doi.org/10.1109/CVPR.2016.207

  17. Shi, W., et al.: Cardiac image super-resolution with global correspondence using multi-atlas PatchMatch. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 9–16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_2

    Chapter  Google Scholar 

  18. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal, March 2015

    Google Scholar 

  19. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network, July 2017. https://doi.org/10.1109/CVPR.2017.298

  20. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. CoRR abs/1708.02209 (2017)

    Google Scholar 

  21. Yıldırım, D., Gungor, O.: A novel image fusion method using IKONOS satellite images. J. Geodesy Geoinform. 1, 27–34 (2012). https://doi.org/10.9733/jgg.170512.1

    Article  Google Scholar 

  22. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  23. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. CoRR abs/1712.06116 (2017)

    Google Scholar 

  24. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks, July 2018

    Google Scholar 

  25. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. CoRR abs/1802.08797 (2018)

    Google Scholar 

  26. Zou, W.W.W., Yuen, P.C.: Very low resolution face recognition problem. IEEE Trans. Image Process. 21(1), 327–340 (2012). https://doi.org/10.1109/TIP.2011.2162423

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 61702044) and the Fundamental Research Funds for the Central Universities (No. 2019XD-A20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Zhou, W., Xing, Y. (2019). Super-Resolution Network for General Static Degradation Model. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11954. Springer, Cham. https://doi.org/10.1007/978-3-030-36711-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36711-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36710-7

  • Online ISBN: 978-3-030-36711-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics