Skip to main content

Cliques in High-Dimensional Random Geometric Graphs

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 881))

Included in the following conference series:

Abstract

Random geometric graphs are good examples of random graphs with a tendency to demonstrate community structure. Vertices of such a graph are represented by points in Euclid space \(\mathbb R^d\), and edge appearance depends on the distance between the points. Random geometric graphs were extensively explored and many of their basic properties are revealed. However, in the case of growing dimension \(d\rightarrow \infty \) practically nothing is known; this regime corresponds to the case of data with many features, a case commonly appearing in practice. In this paper, we focus on the cliques of these graphs in the situation when average vertex degree grows significantly slower than the number of vertices n with \(n\rightarrow \infty \) and \(d\rightarrow \infty \). We show that under these conditions random geometric graphs do not contain cliques of size 4 a.s. As for the size 3, we will present new bounds on the expected number of triangles in the case \(\log ^2 n \ll d \ll \log ^3 n\) that improve previously known results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. Ser. A 5(1), 17–60 (1960)

    Google Scholar 

  2. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  3. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (2004)

    MATH  Google Scholar 

  4. Preciado, V.M., Jadbabaie, A.: Spectral analysis of virus spreading in random geometric networks. In: Proceedings of the 48th IEEE Conference on Decision and Control (CDC) held Jointly with 2009 28th Chinese Control Conference, pp. 4802–4807 (2009). https://doi.org/10.1109/CDC.2009.5400615

  5. Haenggi, M., Andrews, J.G., Baccelli, F., Dousse, O., Franceschetti, M.: Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Areas Commun. 27(7), 1029–1046 (2009). https://doi.org/10.1109/JSAC.2009.090902

    Article  Google Scholar 

  6. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5), 51–58 (2000). https://doi.org/10.1145/332833.332838

    Article  Google Scholar 

  7. Nekovee, M.: Worm epidemics in wireless ad hoc networks. New J. Phys. 9(6), 189 (2007). https://doi.org/10.1088/1367-2630/9/6/189

    Article  Google Scholar 

  8. Xiao, H., Yeh, E.M.: Cascading link failure in the power grid: a percolation-based analysis. In: 2011 IEEE International Conference on Communications Workshops (ICC), pp. 1–6 (2011). https://doi.org/10.1109/iccw.2011.5963573

  9. Higham, D.J., Ras̆ajski, M., Prz̆ulj, N.: Fitting a geometric graph to a protein-protein interaction network. Bioinformatics 24(8), 1093–1099 (2008). https://doi.org/10.1093/bioinformatics/btn079

    Article  Google Scholar 

  10. Arias-Castro, E., Bubeck, S., Lugosi, G.: Detecting positive correlations in a multivariate sample. Bernoulli 21(1), 209–241 (2015). https://doi.org/10.3150/13-BEJ565

    Article  MathSciNet  MATH  Google Scholar 

  11. Penrose, M.: Random Geometric Graphs, vol. 5. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  12. Penrose, M.D.: On \(k\)-connectivity for a geometric random graph. Random Struct. Algorithms 15(2), 145–164 (1999). https://doi.org/10.1002/(SICI)1098-2418(199909)15:2%3C145::AID-RSA2%3E3.0.CO;2-G

    Article  MathSciNet  Google Scholar 

  13. Appel, M.J., Russo, R.P.: The connectivity of a graph on uniform points on \([0, 1]^d\). Stat. Probab. Lett. 60(4), 351–357 (2002). https://doi.org/10.1016/S0167-7152(02)00233-X

    Article  MathSciNet  Google Scholar 

  14. McDiarmid, C.: Random channel assignment in the plane. Random Struct. Algorithms 22(2), 187–212 (2003). https://doi.org/10.1002/rsa.10077

    Article  MathSciNet  Google Scholar 

  15. Müller, T.: Two-point concentration in random geometric graphs. Combinatorica 28(5), 529 (2008). https://doi.org/10.1007/s00493-008-2283-3

    Article  MathSciNet  Google Scholar 

  16. McDiarmid, C., Müller, T.: On the chromatic number of random geometric graphs. Combinatorica 31(4), 423–488 (2011). https://doi.org/10.1007/s00493-011-2403-3

    Article  MathSciNet  Google Scholar 

  17. Devroye, L., György, A., Lugosi, G., Udina, F.: High-dimensional random geometric graphs and their clique number. Electron. J. Probab. 16, 2481–2508 (2011). https://doi.org/10.1214/EJP.v16-967

    Article  MathSciNet  MATH  Google Scholar 

  18. Bubeck, S., Ding, J., Eldan, R., Rácz, M.Z.: Testing for high-dimensional geometry in random graphs. Random Struct. Algorithms 49(3), 503–532 (2016). https://doi.org/10.1002/rsa.20633

    Article  MathSciNet  Google Scholar 

  19. Lee, Y., Kim, W.C.: Concise formulas for the surface area of the intersection of two hyperspherical caps. KAIST Technical Report (2014)

    Google Scholar 

  20. Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M.: Deterministic and randomized polynomial-time approximation of radii. Mathematika 48(1–2), 63–105 (2001). https://doi.org/10.1112/S0025579300014364

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Bobu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avrachenkov, K., Bobu, A. (2020). Cliques in High-Dimensional Random Geometric Graphs. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_49

Download citation

Publish with us

Policies and ethics