Skip to main content

Multi-parameters Model Selection for Network Inference

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 881))

Included in the following conference series:

  • 3119 Accesses

Abstract

Network inference is the reverse-engineering problem of inferring graphs from data. With the always increasing availability of data, methods based on probability assumptions that infer multiple intertwined networks have been proposed in literature. These methods, while being extremely flexible, have the major drawback of presenting a high number of hyper-parameters that need to be tuned. The tuning of hyper-parameters, in unsupervised settings, can be performed through criteria based on likelihood or stability. Likelihood-based scores can be easily generalised to the multi hyper-parameters setting, but their computation is feasible only under certain probability assumptions. Differently, stability-based methods are of general application and, on single hyper-parameter, they have been proved to outperform likelihood-based scores. In this work we present a multi-parameters extension to stability-based methods that can be easily applied on complex models. We extensively compared this extension with likelihood-based scores on synthetic Gaussian data. Experiments show that our extension provides a better estimate of models of increasing complexity providing a valuable alternative of existing likelihood-based model selection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/veronicatozzo/regain/.

References

  1. Allen, G.I., Liu, Z.: A local poisson graphical model for inferring networks from sequencing data. IEEE Trans. Nanobiosci. 12(3), 189–198 (2013)

    Article  Google Scholar 

  2. Barabasi, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101 (2004)

    Article  Google Scholar 

  3. Bergomi, M.G., Ferri, M., Vertechi, P., Zuffi, L.: Beyond topological persistence: Starting from networks. arXiv preprint arXiv:1901.08051 (2019)

  4. Blunt, M.J., Jackson, M.D., Piri, M., Valvatne, P.H.: Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 25(8–12), 1069–1089 (2002)

    Article  Google Scholar 

  5. Bogdan, M., Ghosh, J.K., Doerge, R.W.: Modifying the schwarz bayesian information criterion to locate multiple interacting quantitative trait loci. Genetics 167(2), 989–999 (2004)

    Article  Google Scholar 

  6. Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)

    Article  Google Scholar 

  7. Broman, K.W., Speed, T.P.: A model selection approach for the identification of quantitative trait loci in experimental crosses. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 64(4), 641–656 (2002)

    Article  MathSciNet  Google Scholar 

  8. Chandrasekaran, V., Parrilo, P.A., Willsky, A.S.: Latent variable graphical model selection via convex optimization. In: 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1610–1613. IEEE (2010)

    Google Scholar 

  9. Chen, J., Chen, Z.: Extended bayesian information criteria for model selection with large model spaces. Biometrika 95(3), 759–771 (2008)

    Article  MathSciNet  Google Scholar 

  10. Cheng, L., Shan, L., Kim, I.: Multilevel gaussian graphical model for multilevel networks. J. Stat. Plann. Infer. 190, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  11. Danaher, P., Wang, P., Witten, D.M.: The joint graphical lasso for inverse covariance estimation across multiple classes. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 76(2), 373–397 (2014)

    Article  MathSciNet  Google Scholar 

  12. Foygel, R., Drton, M.: Extended bayesian information criteria for gaussian graphical models. In: Advances in Neural Information Processing Systems, pp. 604–612 (2010)

    Google Scholar 

  13. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  14. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303(5659), 799–805 (2004)

    Article  Google Scholar 

  15. Guo, J., Levina, E., Michailidis, G., Zhu, J.: Joint estimation of multiple graphical models. Biometrika 98(1), 1–15 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hallac, D., Leskovec, J., Boyd, S., lasso, N.: Clustering and optimization in large graphs. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 387–396. ACM (2015)

    Google Scholar 

  17. Hallac, D., Park, Y., Boyd, S., Leskovec, J.: Network inference via the time-varying graphical lasso. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 205–213. ACM (2017)

    Google Scholar 

  18. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of clustering solutions. Neural Comput. 16(6), 1299–1323 (2004)

    Article  Google Scholar 

  19. Lauritzen, S.L.: Graphical Models, vol. 17. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  20. Lee, J.D., Hastie, T.J.: Learning the structure of mixed graphical models. J. Comput. Graph. Stat. 24(1), 230–253 (2015)

    Article  MathSciNet  Google Scholar 

  21. Li, H., Gui, J.: Gradient directed regularization for sparse gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics 7(2), 302–317 (2005)

    Article  Google Scholar 

  22. Liu, H., Roeder, K., Wasserman, L.: Stability approach to regularization selection (stars) for high dimensional graphical models. In: Advances in Neural Information Processing Systems, pp. 1432–1440 (2010)

    Google Scholar 

  23. Meinshausen, N., Bühlmann, P.: Stability selection. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 72(4), 417–473 (2010)

    Article  MathSciNet  Google Scholar 

  24. Meinshausen, N., Bühlmann, P., et al.: High-dimensional graphs and variable selection with the lasso. Ann. Stat. 34(3), 1436–1462 (2006)

    Article  MathSciNet  Google Scholar 

  25. Milenković, T., Pržulj, N.: Uncovering biological network function via graphlet degree signatures. Cancer Inform. 6, CIN–S680 (2008)

    Article  Google Scholar 

  26. Molinaro, A.M., Simon, R., Pfeiffer, R.M.: Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15), 3301–3307 (2005)

    Article  Google Scholar 

  27. Müller, C.L., Bonneau, R., Kurtz, Z.: Generalized stability approach for regularized graphical models. arXiv preprint arXiv:1605.07072 (2016)

  28. Pelizzola, A.: Cluster variation method in statistical physics and probabilistic graphical models. J. Phys. A: Math. Gen. 38(33), R309 (2005)

    Article  MathSciNet  Google Scholar 

  29. Politis, D.N., Romano, J.P., Wolf, M.: Subsampling. Springer, New York (1999)

    Book  Google Scholar 

  30. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007)

    Article  Google Scholar 

  31. Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)

    Article  Google Scholar 

  32. Ravikumar, P., Wainwright, M.J., Lafferty, J.D., et al.: High-dimensional ising model selection using \(\ell _1\)-regularized logistic regression. Ann. Stat. 38(3), 1287–1319 (2010)

    Article  Google Scholar 

  33. Sakamoto, Y., Ishiguro, M., Kitagawa, G.: Akaike information criterion statistics. Dordrecht, The Netherlands: D. Reidel 81 (1986)

    Google Scholar 

  34. Sarajlić, A., Malod-Dognin, N., Yaveroğlu, Ö.N., Pržulj, N.: Graphlet-based characterization of directed networks. Sci. Rep. 6, 35098 (2016)

    Article  Google Scholar 

  35. Siegmund, D.: Model selection in irregular problems: applications to mapping quantitative trait loci. Biometrika 91(4), 785–800 (2004)

    Article  MathSciNet  Google Scholar 

  36. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  37. Stoica, P., Selen, Y.: Model-order selection: a review of information criterion rules. IEEE Sig. Process. Mag. 21(4), 36–47 (2004)

    Article  Google Scholar 

  38. Tomasi, F., Tozzo, V., Salzo, S., Verri, A.: Latent variable time-varying network inference. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2338–2346. ACM (2018)

    Google Scholar 

  39. Von Luxburg, U., et al.: Clustering stability: an overview. Found. Trends® Mach. Learn. 2(3), 235–274 (2010)

    Google Scholar 

  40. Vujačić, I., Abbruzzo, A., Wit, E.: A computationally fast alternative to cross-validation in penalized gaussian graphical models. J. Stat. Comput. Simul. 85(18), 3628–3640 (2015)

    Article  MathSciNet  Google Scholar 

  41. Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link prediction. In: Seventh IEEE International Conference on Data Mining (ICDM 2007), pp. 322–331. IEEE (2007)

    Google Scholar 

  42. Wasserman, L., Roeder, K.: High dimensional variable selection. Ann. Stat. 37(5A), 2178 (2009)

    Article  MathSciNet  Google Scholar 

  43. Wilkinson, D.J.: Bayesian methods in bioinformatics and computational systems biology. Brief. Bioinform. 8(2), 109–116 (2007)

    Article  Google Scholar 

  44. Yang, E., Baker, Y., Ravikumar, P., Allen, G., Liu, Z.: Mixed graphical models via exponential families. In: Artificial Intelligence and Statistics, pp. 1042–1050 (2014)

    Google Scholar 

  45. Yang, E., Ravikumar, P., Allen, G.I., Liu, Z.: Graphical models via univariate exponential family distributions. J. Mach. Learn. Res. 16(1), 3813–3847 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Yang, E., Ravikumar, P.K., Allen, G.I., Liu, Z.: On poisson graphical models. In: Advances in Neural Information Processing Systems, pp. 1718–1726 (2013)

    Google Scholar 

  47. Yuan, M.: Discussion: latent variable graphical model selection via convex optimization. Ann. Stat. 40(4), 1968–1972 (2012)

    Article  Google Scholar 

  48. Zhou, S., Lafferty, J., Wasserman, L.: Time varying undirected graphs. Mach. Learn. 80(2–3), 295–319 (2010)

    Article  MathSciNet  Google Scholar 

  49. Žitnik, M., Zupan, B.: Gene network inference by fusing data from diverse distributions. Bioinformatics 31(12), i230–i239 (2015)

    Article  Google Scholar 

  50. Zou, H., Hastie, T., Tibshirani, R.: On the “degrees of freedom” of the lasso. Ann. Statist. 35(5), 2173–2192 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Tozzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tozzo, V., Barla, A. (2020). Multi-parameters Model Selection for Network Inference. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_47

Download citation

Publish with us

Policies and ethics