Skip to main content

Quantifying Life Quality as Walkability on Urban Networks: The Case of Budapest

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Included in the following conference series:

Abstract

Life quality in cities is deeply related to the mobility options, and how easily one can access different services and attractions. The pedestrian infrastructure network provides the backbone for social life in cities. While there are many approaches to quantify life quality, most do not take specifically into account the walkability of the city, and rather offer a city-wide measure. Here we develop a data-driven, network-based method to quantify the liveability of a city. We introduce a life quality index (LQI) based on pedestrian accessibility to amenities and services, safety and environmental variables. Our computational approach outlines novel ways to measure life quality in a more granular scale, that can become valuable for urban planners, city officials and stakeholders. We apply data-driven methods to Budapest, but as having an emphasis on the online and easily available quantitative data, the methods can be generalized and applied to any city.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobs, J.: The Death and Life of Great American Cities. Random House, New York (1961)

    Google Scholar 

  2. Gössling, S., Schröder, M., Späth, P., Freytag, T.: Urban space distribution and sustainable transport. Transp. Rev. 36(5), 659–679 (2016)

    Article  Google Scholar 

  3. Szell, M.: Crowdsourced quantification and visualization of urban mobility space inequality. Urban Plan. 3(1), 1 (2018)

    Article  Google Scholar 

  4. Heylen, K.: Liveability in social housing: three case-studies in Flanders. Paper Presented at the ENHR Conference “Housing in an Expanding Europe: Theory, Policy, Participation and Implementation”, July 2006

    Google Scholar 

  5. Shamsuddin, S., Hassan, N.R.A., Bilyamin, S.F.I.: Walkable environment in increasing the liveability of a city. Proc. Soc. Behav. Sci. 50(167–178), 169 (2012)

    Google Scholar 

  6. Campbell, S.: Green cities, growing cities, just cities?: urban planning and the contradictions of sustainable development. J. Am. Plan. Assoc. 62(3), 296–312 (1996)

    Article  Google Scholar 

  7. Jabareen, Y.: Planning the resilient city: concepts and strategies for coping with climate change and environmental risk. Cities 31, 220–229 (2013)

    Article  Google Scholar 

  8. Frank, L.D., Sallis, J.F., Conway, T.L., Chapman, J.E., Saelens, B.E., Bachman, W.: Many pathways from land use to health: associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. plan. Assoc. 72(1), 75–87 (2006)

    Article  Google Scholar 

  9. Speck, J.: Walkable City: How Downtown Can Save America, One Step at a Time. North Point Press, New York (2012)

    Google Scholar 

  10. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a primal approach. Environ. Plan. 33(5), 705–726 (2006)

    Article  MATH  Google Scholar 

  11. Barthelemy, M., Flammini, A.: Modeling urban street patterns. Phys. Rev. Lett. 100(13) 138702 (2008)

    Google Scholar 

  12. Louf, R., Barthelemy, M.: A typology of street patterns. J. R. Soc. Interface 11(101), 20140924 (2014)

    Article  Google Scholar 

  13. Strano, E., Nicosia, V., Latora, V., Porta, S., Barthélemy, M.: Elementary processes governing the evolution of road networks. Sci. Rep. 2(1), 296 (2012)

    Article  Google Scholar 

  14. Barthelemy, M., Bordin, P., Berestycki, H., Gribaudi, M.: Self-organization versus top-down planning in the evolution of a city. Sci. Rep. 3(1), 2153 (2013)

    Article  Google Scholar 

  15. Boeing, G.: The morphology and circuity of walkable and drivable street networks. In: Modeling and Simulation in Science, Engineering and Technology, pp. 271–287, Birkhäuser, Cham (2019)

    Google Scholar 

  16. Hajrasouliha, A., Yin, L.: The impact of street network connectivity on pedestrian volume. Urban Stud. 52(13), 2483–2497 (2015)

    Article  Google Scholar 

  17. Daniele, Q., Aiello, L.M., Schifanella, R., Davies, A.: The digital life of walkable streets. In: Proceedings of International World Wide Web Conference (2015)

    Google Scholar 

  18. Silva, J.P., Akleh, A.Z.: Investigating the relationships between the built environment, the climate, walkability and physical activity in the Arabic peninsula: the case of Bahrain. Cogent Soc. Sci. 4(1), 1–21 (2018)

    Google Scholar 

  19. Krambeck, H.V.: The global walkability index (Doctoral dissertation). Massachusetts Institute of Technology (2006)

    Google Scholar 

  20. Southworth, M.: Designing the walkable city. J. Urban Plan. Dev. 131(4), 246–257 (2005)

    Article  Google Scholar 

  21. Carr, L.J., Dunsiger, S.I., Marcus, B.H.: Walk score™as a global estimate of neighborhood walkability. Am. J. Prev. Med. 39(5), 460–463 (2010)

    Article  Google Scholar 

  22. Stephen, M.: A Better Urban Design of Cities is Closely to Sustainable Planning. Rutledge Urban Reader Series, United States (2004)

    Google Scholar 

  23. Childs, S.: A Case for Data-Driven City Planning Neighborhood Knowledge Supports Resilient Communities. https://medium.com/citiesense/a-case-for-data-driven-city-planning-8cd7d9332a (2018)

  24. Kaushik, V.: How Technology Empowers Data-Driven Urban Planning? https://www.getrevue.co/profile/TGIC/issues/how-technology-empowers-data-driven-urban-planning-59814 (2017)

  25. Fitzgerald, M.: Data-Driven City Management A Close Look At Amsterdam Smart City Initiative. MIT Sloan Management Review (2016)

    Google Scholar 

  26. Boeing, G.: OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)

    Article  Google Scholar 

  27. Haklay, M.: How good is volunteered geographical information? a comparative study of OpenStreetMap and ordnance survey datasets. Environ. Plan. 37(4), 682–703 (2010)

    Article  Google Scholar 

  28. Girres, J.F., Touya, G.: Quality assessment of the French OpenStreetMap Dataset. Trans. GIS 14(4), 435–459 (2010)

    Article  Google Scholar 

  29. Ferster, C., Fischer, J., Manaugh, K., Nelson, T., Winters, M.: Using OpenStreetMap to inventory bicycle infrastructure: a comparison with open data from cities. Int. J. Sustain. Transp. 1–10 (2019)

    Google Scholar 

  30. Barbosa-Filho, H., Barthelemy, M., Ghoshal, G., James, C.R., Lenormand, M., Louail, T., Menezes, R., Ramasco, J.J., Simini, F., Tomasini, M.: Models and applications: human mobility (2017)

    Google Scholar 

  31. Budapest districts. https://data2.openstreetmap.hu/hatarok/index.php?admin=9

  32. Official Site of the Hungarian Police. http://www.police.hu/a-rendorsegrol/statisztikak/bunugyi-statisztikak. Data Available at request

  33. Hungarian popultaion data 2016. https://www.ksh.hu/mikrocenzus2016/

  34. National Air Pollution Measurement Network, Automatic Measurement Network, Hungary. http://levegominoseg.hu/manualis-merohalozat. Data Available at request

  35. Rosow, I.: The social effects of the physical environment. J. Am. Inst. Plann. 27(2), 127–133 (1961)

    Article  Google Scholar 

  36. Kahneman, D., Krueger, A.B.: Developments in the measurement of subjective well-being. J. Econ. Perspect. 20(1), 3–24 (2006)

    Article  Google Scholar 

  37. Erwing, M.: The graph Voronoi diagram with applications. Netw.: Int. J. 36(3), 156–163 (2000)

    Article  MathSciNet  Google Scholar 

  38. Deritei, D., Lazar, Z.I., Papp, I., Jarai-Szabo, F., Sumi, R., Varga, L., Regan, E.R., Ercsey-Ravasz, M.: Community detection by graph Voronoi diagrams. New J. Phys. 16, 063007 (2014)

    Article  Google Scholar 

  39. http://levegominoseg.hu/jogszabalyok

  40. Hohenberg, P.M., Lees, L.H.: The Making of Urban Europe 1000–1950. Harvard University Press, Cambridge (1986)

    Google Scholar 

  41. Bruecknera, J.K., Thisse bc, J.F., Zenou bd, Y.: Why is central Paris rich and downtown Detroit poor?: an amenity-based theory. Eur. Econ. Rev. 43(1), 91–107 (1999)

    Google Scholar 

  42. Gyani, G., Kover, G.: Magyarorszag tarsadalomtortenete a reformkortol a masodik vilaghaboriig. 2. jav. kiad. Osiris, Budapest (1998)

    Google Scholar 

  43. Dittmar, H., Ohland, G.: The new transit town: best practices in transit-oriented development. Island Press (2012)

    Google Scholar 

  44. Rogers, S.H., Halstead, J.M., Gardner, K.H., Carlson, C.H.: Examining walkability and social capital as indicators of quality of life at the municipal and neighborhood scales. Appl. Res. Qual. Life 6(2), 201–213 (2011)

    Article  Google Scholar 

  45. Rinner, C.: A geographic visualization approach to multicriteria evaluation of urban quality of life. Int. J. Geogr. Inf. Sci. 21(8), 907–919 (2007)

    Article  Google Scholar 

  46. Gavrilidis, A.A., et al.: Urban landscape quality index planning tool for evaluating urban landscapes and improving the quality of life. Proc. Environ. Sci. 32, 155–167 (2016)

    Article  Google Scholar 

  47. Talen, E.: Pedestrian access as a measure of urban quality. Plan. Pract. Res. 17(3), 257–278 (2002)

    Article  Google Scholar 

  48. Santos, L.D., Martins, I.: Monitoring urban quality of life: the porto experience. Soc. Indic. Res. 80, 411 (2007)

    Article  Google Scholar 

  49. Roback, J.: Wages, rents, and the quality of life. J. Polit. Econ. 90(6), 1257–1278 (1982)

    Article  Google Scholar 

  50. Blomquist, G., Berger, M., Hoehn, J.: New estimates of quality of life in urban areas. Am. Econ. Rev. 78(1), 89–107 (1988)

    Google Scholar 

  51. Lora, E., Powell, A.: A new way of monitoring the quality of urban life. IDB working paper series, 272 (2011)

    Google Scholar 

  52. Budapest Real Estate Statistics. https://www.ingatlannet.hu/statisztika/Budapest

  53. Cassiers, T., Kesteloot, C.: Socio-spatial inequalities and social cohesion in European cities. Urban Stud. 49(9), 1909–1924 (2012)

    Article  Google Scholar 

  54. Garcia, B.: Cultural policy and urban regeneration in Western European cities: lessons from experience, prospects for the future. Local Econ. 19(4), 312–326 (2004)

    Article  Google Scholar 

  55. Gobillon, L., Selod, H., Zenou, Y.: The mechanisms of spatial mismatch. Urban Stud. 44, 2401–2427 (2007)

    Article  Google Scholar 

  56. Sport associations in Budapest. https://sportmegoldasok.hu/klub_budapest.ht. Accessed 01 Jan 2019

  57. Kindergartens & daycare, primary education, secondary education. http://budapest.imami.hu/iskolak-ovodak-bolcsodek/. Accessed 01 Jan 2019

  58. Art and music schools. http://budapest.imami.hu/iskolak-ovodak-bolcsodek/muveszeti-es-sportiskolak. Accessed 01 Jan 2019

  59. Pediatricians, Gynecologists. http://budapest.imami.hu/egeszseg. Accessed 01 Jan 2019

  60. Social Welfare. http://szocialisportal.hu/intezmenykereso. Accessed 01 Jan 2019

  61. Culture centers, Budapest. https://holmivan.valami.infomuvelodes-kultura-klub-lista-122muvelodesi-kozpont. Accessed 01 Jan 2019

  62. Indoor playgrounds. http://budapest.imami.hu/szolgaltatok/szulinapi-party. Accessed 01 Jan 2019

  63. Healthcare (hospitals, private and public clinics, specialists). https://www.budapestinfo.eu/gyogyitas. Accessed 01 Jan 2019

  64. Fitness and Training facilities. https://www.budapestinfo.eu/sportolas/fitnesstermek. Accessed 01 Jan 2019

  65. Outdoor fitness facilities. https://www.google.com/maps/d/u/0/viewer?msa=0&hl=en&ie=UTF8&t=h&ll=47.481378772238784%2C19.130302999999913&spn=1.329955%2C3.757785&source=embed&mid=1qIGN-mnKuGrvNxo0ENmACm78RP8&z=11. Accessed 01 Jan 2019

  66. Thermal and Spa. https://www.budapestinfo.eu/furdozes. Accessed 01 Jan 2019

  67. Playgrounds and Park. https://zoldkalauz.hu/. Accessed 01 Jan 2019

Download references

Acknowledgments

The authors wish to thank the experts of KKBK for consultations, and Federico Battiston and Gerardo Iñiguez for comments and discussions on the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Guillermo Natera Orozco .

Editor information

Editors and Affiliations

Appendices

Appendix

A Secondary Data Sources

  • Sport associations in Budapest [56]

  • Kindergartens, daycares, primary and secondary education [57]

  • Art and music schools [58]

  • Child health services [59]

  • Social welfare system (eg.: elderly care) [60]

  • Culture centers [61]

  • Indoor playgrounds [62]

  • Healthcare (hospitals, private and public clinics, specialists) [63]

  • Fitness and training facilities [64]

  • Outdoor fitness facilities [65]

  • Thermal baths and spa [66]

  • Playgrounds and parks [67]

B Weights Used in the Calculations

The weights of the different Q indices in the final aggregation as well as in sub-categories highly depends on the context and the nature of the problem. Here we present the values we used to generate the results of this study, that were agreed upon consulting with experts. The weights of the sub-indices from Eq. (1) are of the following values:

\(w^{services}=0.7\)

\(w^{safety}=0.1\)

\(w^{environment}=0.2\)

The category weights used in Eq. (2), aggregating \(Q^{services}\) are:

\(w^{family}= 0.3\);

\(w^{health}= 0.3\);

\(w^{culture} = 0.15\);

\(w^{sport} = 0.15\);

\(w^{night life}=0.1\);

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Natera Orozco, L.G., Deritei, D., Vancso, A., Vasarhelyi, O. (2020). Quantifying Life Quality as Walkability on Urban Networks: The Case of Budapest. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_72

Download citation

Publish with us

Policies and ethics