Skip to main content

CCL3 Signaling in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

Within the tumor microenvironment, chemokines play a key role in immune cell trafficking regulation and immune landscape formulation. CCL3 or macrophage inflammatory protein-1α (MIP-1α), an important chemokine implicated in both immune surveillance and tolerance, has emerged as a prognostic biomarker in both solid and hematological malignancies. CCL3 exerts both antitumor and pro-tumor behavior which is context dependent highlighting the complexity of the underlying interrelated signaling cascades. Current CCL3-directed therapeutic approaches are investigational and further optimization is required to increase efficacy and minimize adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schulz O, Hammerschmidt SI, Moschovakis GL, Forster R (2016) Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu Rev Immunol 34:203–242

    Article  CAS  PubMed  Google Scholar 

  2. Nagarsheth N, Wicha MS, Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17(9):559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vilgelm AE, Richmond A (2019) Chemokines modulate immune surveillance in tumorigenesis, metastasis, and response to immunotherapy. Front Immunol 10:333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  5. Wolpe SD, Davatelis G, Sherry B et al (1988) Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med 167(2):570–581

    Article  CAS  PubMed  Google Scholar 

  6. Menten P, Wuyts A, Van Damme J (2002) Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13(6):455–481

    Article  CAS  PubMed  Google Scholar 

  7. Danforth JM, Strieter RM, Kunkel SL, Arenberg DA, VanOtteren GM, Standiford TJ (1995) Macrophage inflammatory protein-1 alpha expression in vivo and in vitro: the role of lipoteichoic acid. Clin Immunol Immunopathol 74(1):77–83

    Article  CAS  PubMed  Google Scholar 

  8. Lindell DM, Standiford TJ, Mancuso P, Leshen ZJ, Huffnagle GB (2001) Macrophage inflammatory protein 1alpha/CCL3 is required for clearance of an acute Klebsiella pneumoniae pulmonary infection. Infect Immun 69(10):6364–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rajagopal S, Bassoni DL, Campbell JJ, Gerard NP, Gerard C, Wehrman TS (2013) Biased agonism as a mechanism for differential signaling by chemokine receptors. J Biol Chem 288(49):35039–35048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schaller TH, Batich KA, Suryadevara CM, Desai R, Sampson JH (2017) Chemokines as adjuvants for immunotherapy: implications for immune activation with CCL3. Expert Rev Clin Immunol 13(11):1049–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davatelis G, Tekamp-Olson P, Wolpe SD et al (1988) Cloning and characterization of a cDNA for murine macrophage inflammatory protein (MIP), a novel monokine with inflammatory and chemokinetic properties. J Exp Med 167(6):1939–1944

    Article  CAS  PubMed  Google Scholar 

  12. Lukacs NW, Strieter RM, Elner VM, Evanoff HL, Burdick M, Kunkel SL (1994) Intercellular adhesion molecule-1 mediates the expression of monocyte-derived MIP-1 alpha during monocyte-endothelial cell interactions. Blood 83(5):1174–1178

    Article  CAS  PubMed  Google Scholar 

  13. Broxmeyer HE, Cooper S, Hangoc G, Gao JL, Murphy PM (1999) Dominant myelopoietic effector functions mediated by chemokine receptor CCR1. J Exp Med 189(12):1987–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cook DN, Beck MA, Coffman TM et al (1995) Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science 269(5230):1583–1585

    Article  CAS  PubMed  Google Scholar 

  15. Luster AD (2002) The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol 14(1):129–135

    Article  CAS  PubMed  Google Scholar 

  16. Narni-Mancinelli E, Soudja SM, Crozat K et al (2011) Inflammatory monocytes and neutrophils are licensed to kill during memory responses in vivo. PLoS Pathog 7(12):e1002457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Narni-Mancinelli E, Campisi L, Bassand D et al (2007) Memory CD8+ T cells mediate antibacterial immunity via CCL3 activation of TNF/ROI+ phagocytes. J Exp Med 204(9):2075–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D (2019) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. https://doi.org/10.1038/s41577-019-0210-z

  19. Trifilo MJ, Lane TE (2004) The CC chemokine ligand 3 regulates CD11c+CD11b+CD8alpha- dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology 327(1):8–15

    Article  CAS  PubMed  Google Scholar 

  20. Song R, Liu S, Leong KW (2007) Effects of MIP-1 alpha, MIP-3 alpha, and MIP-3 beta on the induction of HIV Gag-specific immune response with DNA vaccines. Mol Ther 15(5):1007–1015

    Article  CAS  PubMed  Google Scholar 

  21. Mitchell DA, Batich KA, Gunn MD et al (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519(7543):366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song B, Wang C, Liu J et al (2010) MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res 29:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Yoneyama H, Wang Y et al (2004) Mobilization of dendritic cell precursors into the circulation by administration of MIP-1alpha in mice. J Natl Cancer Inst 96(3):201–209

    Article  CAS  PubMed  Google Scholar 

  24. Zibert A, Balzer S, Souquet M et al (2004) CCL3/MIP-1alpha is a potent immunostimulator when coexpressed with interleukin-2 or granulocyte-macrophage colony-stimulating factor in a leukemia/lymphoma vaccine. Hum Gene Ther 15(1):21–34

    Article  CAS  PubMed  Google Scholar 

  25. Iida N, Nakamoto Y, Baba T et al (2010) Antitumor effect after radiofrequency ablation of murine hepatoma is augmented by an active variant of CC Chemokine ligand 3/macrophage inflammatory protein-1alpha. Cancer Res 70(16):6556–6565

    Article  CAS  PubMed  Google Scholar 

  26. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN (2006) Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440(7086):890–895

    Article  CAS  PubMed  Google Scholar 

  27. Allen F, Bobanga ID, Rauhe P et al (2018) CCL3 augments tumor rejection and enhances CD8(+) T cell infiltration through NK and CD103(+) dendritic cell recruitment via IFNgamma. Oncoimmunology 7(3):e1393598

    Article  PubMed  Google Scholar 

  28. Hirose K, Hakozaki M, Nyunoya Y et al (1995) Chemokine gene transfection into tumour cells reduced tumorigenicity in nude mice in association with neutrophilic infiltration. Br J Cancer 72(3):708–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gough M, Crittenden M, Thanarajasingam U et al (2005) Gene therapy to manipulate effector T cell trafficking to tumors for immunotherapy. J Immunol 174(9):5766–5773

    Article  CAS  PubMed  Google Scholar 

  30. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550

    Article  CAS  PubMed  Google Scholar 

  31. Bian X, Xiao YT, Wu T et al (2019) Microvesicles and chemokines in tumor microenvironment: mediators of intercellular communications in tumor progression. Mol Cancer 18(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen D, Bromberg JS (2006) T regulatory cells and migration. Am J Transplant 6(7):1518–1523

    Article  CAS  PubMed  Google Scholar 

  33. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631

    Article  CAS  PubMed  Google Scholar 

  34. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6(3):1670–1690

    Article  CAS  Google Scholar 

  35. De la Fuente Lopez M, Landskron G, Parada D et al (2018) The relationship between chemokines CCL2, CCL3, and CCL4 with the tumor microenvironment and tumor-associated macrophage markers in colorectal cancer. Tumour Biol 40(11):1010428318810059

    PubMed  Google Scholar 

  36. Biswas SK, Sica A, Lewis CE (2008) Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 180(4):2011–2017

    Article  CAS  PubMed  Google Scholar 

  37. Biswas SK, Gangi L, Paul S et al (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122

    Article  CAS  PubMed  Google Scholar 

  38. Saccani A, Schioppa T, Porta C et al (2006) p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66(23):11432–11440

    Article  CAS  PubMed  Google Scholar 

  39. Argyle D, Kitamura T (2018) Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors. Front Immunol 9:2629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kitamura T, Qian BZ, Soong D et al (2015) CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 212(7):1043–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu Y, Li YY, Matsushima K, Baba T, Mukaida N (2008) CCL3-CCR5 axis regulates intratumoral accumulation of leukocytes and fibroblasts and promotes angiogenesis in murine lung metastasis process. J Immunol 181(9):6384–6393

    Article  CAS  PubMed  Google Scholar 

  42. Zucchetto A, Benedetti D, Tripodo C et al (2009) CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer Res 69(9):4001–4009

    Article  CAS  PubMed  Google Scholar 

  43. Eissmann MF, Dijkstra C, Jarnicki A et al (2735) IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat Commun 10(1):2019

    Google Scholar 

  44. Kitamura T, Pollard JW (2015) Therapeutic potential of chemokine signal inhibition for metastatic breast cancer. Pharmacol Res 100:266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Silva TA, Ribeiro FL, Oliveira-Neto HH et al (2007) Dual role of CCL3/CCR1 in oral squamous cell carcinoma: implications in tumor metastasis and local host defense. Oncol Rep 18(5):1107–1113

    CAS  PubMed  Google Scholar 

  46. Nolz JC, Starbeck-Miller GR, Harty JT (2011) Naive, effector and memory CD8 T-cell trafficking: parallels and distinctions. Immunotherapy 3(10):1223–1233

    Article  CAS  PubMed  Google Scholar 

  47. Bernardini G, Antonangeli F, Bonanni V, Santoni A (2016) Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases. Front Immunol 7:402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mikucki ME, Fisher DT, Matsuzaki J et al (2015) Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun 6:7458

    Article  CAS  PubMed  Google Scholar 

  49. Yu YR, Fong AM, Combadiere C, Gao JL, Murphy PM, Patel DD (2007) Defective antitumor responses in CX3CR1-deficient mice. Int J Cancer 121(2):316–322

    Article  CAS  PubMed  Google Scholar 

  50. Baba T, Mukaida N (2014) Role of macrophage inflammatory protein (MIP)-1alpha/CCL3 in leukemogenesis. Mol Cell Oncol 1(1):e29899

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dong L, Zheng H, Qu CK (2017) CCL3 is a key mediator for the leukemogenic effect of Ptpn11-activating mutations in the stem-cell microenvironment. Blood 130(12):1471–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hartmann EM, Rudelius M, Burger JA, Rosenwald A (2016) CCL3 chemokine expression by chronic lymphocytic leukemia cells orchestrates the composition of the microenvironment in lymph node infiltrates. Leuk Lymphoma 57(3):563–571

    Article  CAS  PubMed  Google Scholar 

  53. Baba T, Naka K, Morishita S, Komatsu N, Hirao A, Mukaida N (2013) MIP-1alpha/CCL3-mediated maintenance of leukemia-initiating cells in the initiation process of chronic myeloid leukemia. J Exp Med 210(12):2661–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nicholls SE, Lucas G, Graham GJ et al (1999) Macrophage-inflammatory protein-1alpha receptor expression on normal and chronic myeloid leukemia CD34+ cells. J Immunol 162(10):6191–6199

    CAS  PubMed  Google Scholar 

  55. Chasty RC, Lucas GS, Owen-Lynch PJ, Pierce A, Whetton AD (1995) Macrophage inflammatory protein-1 alpha receptors are present on cells enriched for CD34 expression from patients with chronic myeloid leukemia. Blood 86(11):4270–4277

    Article  CAS  PubMed  Google Scholar 

  56. Frisch BJ, Ashton JM, Xing L, Becker MW, Jordan CT, Calvi LM (2012) Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119(2):540–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vallet S, Raje N, Ishitsuka K et al (2007) MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood 110(10):3744–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA (2018) Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J 8(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  59. Roussou M, Tasidou A, Dimopoulos MA et al (2009) Increased expression of macrophage inflammatory protein-1alpha on trephine biopsies correlates with extensive bone disease, increased angiogenesis and advanced stage in newly diagnosed patients with multiple myeloma. Leukemia 23(11):2177–2181

    Article  CAS  PubMed  Google Scholar 

  60. Terpos E, Tasidou A, Eleftherakis-Papaiakovou E et al (2011) Expression of CCL3 by neoplastic cells in patients with Waldenstrom’s macroglobulinemia: an immunohistochemical study in bone marrow biopsies of 67 patients. Clin Lymphoma Myeloma Leuk 11(1):115–117

    Article  CAS  PubMed  Google Scholar 

  61. Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY (2003) Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 101(9):3568–3573

    Article  CAS  PubMed  Google Scholar 

  62. Staversky RJ, Byun DK, Georger MA et al (2018) The chemokine CCL3 regulates myeloid differentiation and hematopoietic stem cell numbers. Sci Rep 8(1):14691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Nishikawa G, Kawada K, Nakagawa J et al (2019) Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression via CCR5. Cell Death Dis 10(4):264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Messina JL, Fenstermacher DA, Eschrich S et al (2012) 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2:765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sivina M, Hartmann E, Kipps TJ et al (2011) CCL3 (MIP-1alpha) plasma levels and the risk for disease progression in chronic lymphocytic leukemia. Blood 117(5):1662–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takahashi K, Sivina M, Hoellenriegel J et al (2015) CCL3 and CCL4 are biomarkers for B cell receptor pathway activation and prognostic serum markers in diffuse large B cell lymphoma. Br J Haematol 171(5):726–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Terpos E, Anagnostopoulos A, Kastritis E, Bamias A, Tsionos K, Dimopoulos MA (2006) Abnormal bone remodelling and increased levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) in Waldenstrom macroglobulinaemia. Br J Haematol 133(3):301–304

    Article  CAS  PubMed  Google Scholar 

  68. Eleutherakis-Papaiakovou E, Kastritis E, Gavriatopoulou M et al (2018) Circulating soluble receptor activator of nuclear factor kappa B ligand and C-C motif ligand 3 correlate with survival in patients with waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk 18(6):431–437

    Article  PubMed  Google Scholar 

  69. Terpos E, Politou M, Szydlo R, Goldman JM, Apperley JF, Rahemtulla A (2003) Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma. Br J Haematol 123(1):106–109

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Terpos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ntanasis-Stathopoulos, I., Fotiou, D., Terpos, E. (2020). CCL3 Signaling in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1231. Springer, Cham. https://doi.org/10.1007/978-3-030-36667-4_2

Download citation

Publish with us

Policies and ethics