Skip to main content

Effect of 2 wt% Ag Addition on Corrosion Properties of ZK40 for Biodegradable Applications

  • Conference paper
  • First Online:
Magnesium Technology 2020

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1880 Accesses

Abstract

The antibacterial effects of silver make it an attractive alloying element for biodegradable Mg alloys to treat possible inflammation and infections caused by the degrading orthopedic implants. In this study, as-extruded Mg–4%Zn–0.5%Zr (ZK40) alloy was alloyed with Ag, specifically 2 wt%, and subjected to a heat treatment at 350 ℃ for 7 days. The mechanical and corrosion responses were studied in two orthogonal planes (transverse and extrusion) before and after silver addition to explore its potential for biodegradable orthopedic applications. Corrosion characteristics were assessed at 37 ℃ in Hank’s solution for 24 h via electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PD) and open circuit potential (OCP). As-extruded and heat-treated ZK40 alloy displayed an inhomogeneous microstructure containing large, coarse grains, Zn–Zr rich secondary phase and some fine grain regions. While in ZK40–Ag, both planes showed a relatively more homogenous microstructure but with some agglomeration of Zn–Ag rich secondary phases. Here, we present our initial results on the different corrosion behaviors observed in the two materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen Y, Xu Z, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10:4561–4573. https://doi.org/10.1016/j.actbio.2014.07.005

    Article  CAS  Google Scholar 

  2. Wang J, Smith CE, Sankar J, et al (2015) Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. Regen Biomater 2:59–69. https://doi.org/10.1093/rb/rbu015

    Article  CAS  Google Scholar 

  3. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27:1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  Google Scholar 

  4. Li X, Liu X, Wu S, et al (2016) Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater 45:2–30. https://doi.org/10.1016/j.actbio.2016.09.005

    Article  CAS  Google Scholar 

  5. Witte F, Kaese V, Haferkamp H, et al (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563. https://doi.org/10.1016/j.biomaterials.2004.09.049

    Article  CAS  Google Scholar 

  6. Zhao D, Witte F, Lu F, et al (2017) Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 112:287–302. https://doi.org/10.1016/j.biomaterials.2016.10.017

    Article  CAS  Google Scholar 

  7. Ding Y, Wen C, Hodgson P, Li Y (2014) Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. J Mater Chem B 2:1912–1933. https://doi.org/10.1039/C3TB21746A

    Article  CAS  Google Scholar 

  8. Gawlik MM, Wiese B, Desharnais V, et al (2018) The effect of surface treatments on the degradation of biomedical Mg alloys-a review paper. Materials (Basel) 11:1–29. https://doi.org/10.3390/ma11122561

    Article  CAS  Google Scholar 

  9. Ratna Sunil B, Sampath Kumar TS, Chakkingal U, et al (2016) In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing. Mater Sci Eng C 59:356–367. https://doi.org/10.1016/j.msec.2015.10.028

    Article  CAS  Google Scholar 

  10. Minárik P, Král R, Čížek J, Chmelík F (2016) Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater 107:83–95. https://doi.org/10.1016/j.actamat.2015.12.050

    Article  CAS  Google Scholar 

  11. Saha P, Roy M, Datta MK, et al (2015) Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium. Mater Sci Eng C 57:294–303. https://doi.org/10.1016/j.msec.2015.07.033

    Article  CAS  Google Scholar 

  12. Buzolin RH, Mohedano M, Mendis CL, et al (2017) As cast microstructures on the mechanical and corrosion behaviour of ZK40 modified with Gd and Nd additions. Mater Sci Eng A 682:238–247. https://doi.org/10.1016/j.msea.2016.11.022

    Article  CAS  Google Scholar 

  13. Yuan Y, Ma A, Jiang J, et al (2013) Optimizing the strength and ductility of AZ91 Mg alloy by ECAP and subsequent aging. Mater Sci Eng A 588:329–334. https://doi.org/10.1016/j.msea.2013.09.052

    Article  CAS  Google Scholar 

  14. Mokhtarishirazabad M, Azadi M, Hossein Farrahi G, et al (2013) Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment. Mater Sci Eng A 588:357–365. https://doi.org/10.1016/j.msea.2013.09.067

    Article  CAS  Google Scholar 

  15. Lu Y, Bradshaw AR, Chiu YL, Jones IP (2015) Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Mater Sci Eng C 48:480–486. https://doi.org/10.1016/j.msec.2014.12.049

    Article  CAS  Google Scholar 

  16. Zhang S, Zhang X, Zhao C, et al (2010) Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater 6:626–640. https://doi.org/10.1016/j.actbio.2009.06.028

    Article  CAS  Google Scholar 

  17. Mostaed E, Vedani M, Hashempour M, Bestetti M (2014) Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications. Biomatter 4:e28283. https://doi.org/10.4161/biom.28283

    Article  Google Scholar 

  18. Song X, Chang L, Wang J, et al (2018) Investigation on the in vitro cytocompatibility of Mg-Zn-Y-Nd-Zr alloys as degradable orthopaedic implant materials. J Mater Sci Mater Med 29. https://doi.org/10.1007/s10856-018-6050-8

  19. Guan RG, Cipriano AF, Zhao ZY, et al (2013) Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications - Alloy processing, microstructure, mechanical properties, and biodegradation. Mater Sci Eng C 33:3661–3669. https://doi.org/10.1016/j.msec.2013.04.054

    Article  CAS  Google Scholar 

  20. Vinogradov A, Vasilev E, Kopylov V, et al (2019) High Performance Fine-Grained Biodegradable Mg-Zn-Ca Alloys Processed by Severe Plastic Deformation. Metals (Basel) 9:186. https://doi.org/10.3390/met9020186

    Article  CAS  Google Scholar 

  21. Chen D, He Y, Tao H, et al (2011) Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants. Int J Mol Med 28:343–348. https://doi.org/10.3892/ijmm.2011.707

    Article  CAS  Google Scholar 

  22. AbdelGawad M, Mansoor B, Chaudhry AU (2018) Corrosion Characteristics of Two Rare Earth Containing Magnesium Alloys BT - Magnesium Technology 2018. In: Orlov D, Joshi V, Solanki KN, Neelameggham NR (eds). Springer International Publishing, Cham, pp 43–53

    Google Scholar 

  23. AbdelGawad M, Chaudhry AU, Mansoor B (2019) The Influence of Temperature and Medium on Corrosion Response of ZE41 and EZ33. In: Joshi VV, Jordon JB, Orlov D, Neelameggham NR (eds) Magnesium Technology 2019. Springer International Publishing, Cham, pp 159–167

    Chapter  Google Scholar 

  24. Hong D, Saha P, Chou DT, et al (2013) In vitro degradation and cytotoxicity response of Mg-4% Zn-0.5% Zr (ZK40) alloy as a potential biodegradable material. Acta Biomater 9:8534–8547. https://doi.org/10.1016/j.actbio.2013.07.001

    Article  CAS  Google Scholar 

  25. Song G (2005) Recent progress in corrosion and protection of magnesium alloys. Adv Eng Mater 7:563–586. https://doi.org/10.1002/adem.200500013

    Article  CAS  Google Scholar 

  26. Tie D, Feyerabend F, Hort N, et al (2014) In vitro mechanical and corrosion properties of biodegradable Mg-Ag alloys. Mater Corros 65:569–576. https://doi.org/10.1002/maco.201206903

    Article  CAS  Google Scholar 

  27. Kannan MB, Raman RKS (2008) In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 29:2306–2314. https://doi.org/10.1016/j.biomaterials.2008.02.003

    Article  CAS  Google Scholar 

  28. Ben-Hamu G, Eliezer D, Kaya A, et al (2006) Microstructure and corrosion behavior of Mg-Zn-Ag alloys. Mater Sci Eng A 435–436:579–587. https://doi.org/10.1016/j.msea.2006.07.109

    Article  CAS  Google Scholar 

  29. Zhang X, Yuan G, Niu J, et al (2012) Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios. J Mech Behav Biomed Mater 9:153–162. https://doi.org/10.1016/j.jmbbm.2012.02.002

    Article  CAS  Google Scholar 

  30. Minárik P, Král R, Pešička J, et al (2016) Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP. Mater Charact 112:1–10. https://doi.org/10.1016/j.matchar.2015.12.002

    Article  CAS  Google Scholar 

  31. Mostaed E, Hashempour M, Fabrizi A, et al (2014) Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications. J Mech Behav Biomed Mater 37:307–322. https://doi.org/10.1016/j.jmbbm.2014.05.024

    Article  CAS  Google Scholar 

  32. Azeem MA, Tewari A, Mishra S, et al (2010) Development of novel grain morphology during hot extrusion of magnesium AZ21 alloy. Acta Mater 58:1495–1502. https://doi.org/10.1016/j.actamat.2009.10.056

    Article  CAS  Google Scholar 

  33. Song GL (2012) The effect of texture on the corrosion behavior of AZ31 Mg alloy. Jom 64:671–679. https://doi.org/10.1007/s11837-012-0341-1

    Article  CAS  Google Scholar 

  34. Ben-Hamu G, Eliezer D, Shin KS (2006) Influence of Si, Ca and Ag addition on corrosion behaviour of new wrought Mg-Zn alloys. Mater Sci Technol 22:1213–1218. https://doi.org/10.1179/174328406X109203

    Article  CAS  Google Scholar 

  35. Mandal M, Moon AP, Deo G, et al (2014) Corrosion behavior of Mg-2.4Zn alloy micro-alloyed with Ag and Ca. Corros Sci 78:172–182. https://doi.org/10.1016/j.corsci.2013.09.012

    Article  CAS  Google Scholar 

  36. Gusieva K, Davies CHJ, Scully JR, Birbilis N (2015) Corrosion of magnesium alloys: the role of alloying. Int Mater Rev 60:169–194. https://doi.org/10.1179/1743280414Y.0000000046

    Article  CAS  Google Scholar 

  37. Gusieva K, Sato T, Sha G, et al (2013) Influence of low level Ag additions on Mg-alloy AZ91. Adv Eng Mater 15:485–490. https://doi.org/10.1002/adem.201200321

    Article  CAS  Google Scholar 

  38. Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater 8:925–936. https://doi.org/10.1016/j.actbio.2011.11.014

    Article  CAS  Google Scholar 

  39. Zhang X, Ba Z, Wang Z, et al (2013) Influence of silver addition on microstructure and corrosion behavior of Mg-Nd-Zn-Zr alloys for biomedical application. Mater Lett 100:188–191. https://doi.org/10.1016/j.matlet.2013.03.061

    Article  CAS  Google Scholar 

  40. Lin DJ, Hung FY, Liu HJ, Yeh ML (2017) Dynamic Corrosion and Material Characteristics of Mg–Zn–Zr Mini-Tubes: The Influence of Microstructures and Extrusion Parameters. Adv Eng Mater 19:1–11. https://doi.org/10.1002/adem.201700159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was performed with support from the Qatar Foundation under the National Priorities Research Program grant# NPRP 8-856-2-364. The authors acknowledge this financial support with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mansoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

AbdelGawad, M., Mansoor, B., Vaughan, M.W., Karaman, I. (2020). Effect of 2 wt% Ag Addition on Corrosion Properties of ZK40 for Biodegradable Applications. In: Jordon, J., Miller, V., Joshi, V., Neelameggham, N. (eds) Magnesium Technology 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36647-6_38

Download citation

Publish with us

Policies and ethics