Skip to main content

Inhibition of Flame Propagation in Nanocomposites with Expanded Polystyrene Recycled Clay, Gypsum, and Titanium Dioxide

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2020

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1747 Accesses

Abstract

The large amount of plastic waste found in the environment, landfills, and dumps boost research into the recycling of polymer materials, which could reduce the amount of polymer discarded. In Brazil, the sector that most consumes polymers is the civil construction that could consume recycled polymers without concerns with the properties due to applications of low mechanical exigency. However, for applications in this sector, it is necessary that the materials have some resistance to the propagation of flames. This work discusses the flame retardance in nanocomposites with recycled polystyrene matrix and particles of nanoargila, titanium dioxide, and gypsum. The results of the X-ray diffraction (XRD), differential scanning calorimeter (DSC), field emission scanning electron microscopy (FE-SEM), and flammability test. The results showed that glycerol, added during recycling, can plasticize recycled expanded polystyrene while maintaining the flame resistance properties of the material with flame retardant. It can also be concluded that some particles may delay the propagation of the flame in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abiplast - Associação Brasileira da Indústria. Indústria Brasileira de Transformação e Reciclagem de Material. (2018) In: Perfil 2018. Brazilian plastic processed and recycling industry. http://www.abiplast.org.br/wp-content/uploads/2019/08/perfil-2018-web.pdf. Accessed 16 Aug 2019

  2. ABNT - Associação Brasileira De Normas Técnicas (1986) NBR9442 - Materiais de construção - determinação do índice de propagação superficial de chama pelo método do painel radiante. Rio de Janeiro

    Google Scholar 

  3. Secretaria Do Estado Dos Negócios Da Segurança Pública (2011) Polícia Militar. Instrução Técnica n° 08 - Resistência ao fogo dos elementos de construção. Corpo de Bombeiros, pp 191–202

    Google Scholar 

  4. Secretaria Do Estado Dos Negócios Da Segurança Pública (2011) Polícia Militar. Instrução Técnica n° 10 - Controle de materiais de acabamento e de revestimento. Corpo de Bombeiros, pp 217–226

    Google Scholar 

  5. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35(7):902–958

    Article  CAS  Google Scholar 

  6. Laoutid F et al (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng 63(3):100–125

    Article  Google Scholar 

  7. Leszczyńska A et al (2006) Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochim Acta 453(2):75–96

    Article  Google Scholar 

  8. Morgan AB (2003) Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Advan Technol 17(4):206–217

    Article  Google Scholar 

  9. Morgan AB et al (2003) Flammability of polystyrene layered silicate (clay) nanocomposites: carbonaceous char formation. Fire Mater 26(6):247–253

    Article  Google Scholar 

  10. Ning W, Jiugao Y, Xiaofei M (2008) Review new developments in flame retardancy of styrene thermoplastics and foams. Polym Int 57:431–448

    Article  Google Scholar 

  11. Xing W et al (2016) Enhanced thermal stability and flame retardancy of polystyrene by incorporating titanium dioxide nanotubes via radical adsorption effect. Compos Sci Technol 133:15–22

    Article  CAS  Google Scholar 

  12. Paiva LB, De Morales AR, Díaz FRV (2008) Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. Cerâmica 54:213–226

    Article  Google Scholar 

  13. Chen T et al (2019) Fire, thermal and mechanical properties of TPE composites with systems containing piperazine pyrophosphate (PAPP), melamine phosphate (MPP) and titanium dioxide (TiO2). Plast Rubber Compos 48(4):149–159

    Article  CAS  Google Scholar 

  14. Rahmani H et al (2011) Synergistic effects of titanium dioxide with layered double hydroxides in EVA/LDH composites. Polym Eng Sci 2166–2170. https://doi.org/10.1002/pen

  15. Pang XY, Chang R, Weng MQ (2018) Halogen-free flame retarded rigid polyurethane foam: the influence of titanium dioxide modified expandable graphite and ammonium polyphosphate on flame retardancy and thermal stability. Polym Eng Sci 58(11):2008–2018

    Article  CAS  Google Scholar 

  16. Wu Y, Song L, Hu Y (2012) Thermal properties and combustion behaviors of polystyrene/surface-modified TiO2 nanotubes nanocomposites. Polym-Plast Technol 51(6):647–653

    Article  CAS  Google Scholar 

  17. Sjoerdsma SD (1986) The effect of glycerol on the crazing behaviour of polystyrene in relation to the craze boundary temperature. Polymer 27(2):164–168

    Article  CAS  Google Scholar 

  18. Ani KEA, Ramadhan AE (2015) Kinetic study of the effect of plasticization on photodegradation of polystyrene solid films. Mater Sci Appl 6:617–633

    Google Scholar 

  19. Bartolomei SS, Moura EAB, Wiebeck H (2018) Addition of glycerol and plaster particles for toughening recycled polystyrene. Paper presented at the 8th Isnapol, Águas de São Pedro, São Paulo, 27–30 May 2018

    Google Scholar 

  20. Machado MDS (2016) Nanocompósito de poliestireno reciclado, bentonita sódica e hemi-hidrato de sulfato de cálcio: Obtenção e Caracterização. Ph.D. thesis, University of São Paulo

    Google Scholar 

  21. Šeputytė-Jucikė J et al (2014) Impact of granules from crushed expanded polystyrene package on properties of thermo—insulating plaster. J Civ Eng Manag 20(4):581–589

    Article  Google Scholar 

  22. Li T et al (2016) Polyaniline/montmorillonite nanocomposites as an effective flame retardant and smoke suppressant for polystyrene. Synth Met 221:28–38

    Article  Google Scholar 

  23. Zhu J, Wilkie CA (2000) Thermal and fire studies on polystyrene-clay nanocomposites. Polym Int 49(10):1158–1163

    Article  CAS  Google Scholar 

  24. Kango S et al (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Pol Sci 38(8):1232–1261

    Article  CAS  Google Scholar 

  25. Li H et al (2018) 3D flowerlike TiO2/GO and TiO2/MoS2 heterostructures with enhanced photoelectrochemical water splitting. J Mater Sci 53:7609–7620

    Article  CAS  Google Scholar 

  26. Bartolomei SS et al. (2018) Investigation of the effect of titanium dioxide and clay grafted with glycidyl methacrylate by gamma radiation on the properties of EVA flexible films. Radiat Phys Chem Apr 1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Bartolomei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartolomei, S.S., Moura, E.A.B., Wiebeck, H. (2020). Inhibition of Flame Propagation in Nanocomposites with Expanded Polystyrene Recycled Clay, Gypsum, and Titanium Dioxide. In: Li, J., et al. Characterization of Minerals, Metals, and Materials 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36628-5_60

Download citation

Publish with us

Policies and ethics