Skip to main content

A Fast Exact Algorithm for Airplane Refueling Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11949))

  • 861 Accesses

Abstract

We consider the airplane refueling problem, where we have a fleet of airplanes that can refuel each other. Each airplane is characterized by specific fuel tank volume and fuel consumption rate, and the goal is to find a drop out order of airplanes that last airplane in the air can reach as far as possible. This problem is equivalent to the scheduling problem \(1||\sum w_j (- \frac{1}{C_j})\). Based on the dominance properties among jobs, we reveal some structural properties of the problem and propose a recursive algorithm to solve the problem exactly. The running time of our algorithm is directly related to the number of schedules that do not violate the dominance properties. An experimental study shows our algorithm outperforms state of the art exact algorithms and is efficient on larger instances.

This work is supported by Key Laboratory of Management, Decision and Information Systems, CAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albers, S., Baruah, S.K., Möhring, R.H., Pruhs, K.: Open problems - scheduling. In: Scheduling. No. 10071 in Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany (2010)

    Google Scholar 

  2. Bagga, P.C., Karlra, K.R.: A node elimination procedure for townsend’s algorithm for solving the single machine quadratic penalty function scheduling problem. Manage. Sci. 26(6), 633–636 (1980). https://doi.org/10.1287/mnsc.26.6.633

    Article  MathSciNet  MATH  Google Scholar 

  3. Bansal, N., Pruhs, K.: The geometry of scheduling. SIAM J. Comput. 43(5), 1684–1698 (2014). https://doi.org/10.1137/130911317

    Article  MathSciNet  MATH  Google Scholar 

  4. Bansal, N., Dürr, C., Thang, N.K., Vásquez, O.C.: The local-global conjecture for scheduling with non-linear cost. J. Sched. 20(3), 239–254 (2017). https://doi.org/10.1007/s10951-015-0466-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheung, M., Mestre, J., Shmoys, D., Verschae, J.: A primal-dual approximation algorithm for min-sum single-machine scheduling problems. SIAM J. Discrete Math. 31(2), 825–838 (2017). https://doi.org/10.1137/16M1086819

    Article  MathSciNet  MATH  Google Scholar 

  6. Croce, F.D., Tadei, R., Baracco, P., Tullio, R.D.: On minimizing the weighted sum of quadratic completion times on a single machine. In: 1993 Proceedings IEEE International Conference on Robotics and Automation, vol. 3, pp. 816–820 (1993). https://doi.org/10.1109/ROBOT.1993.292245

  7. Dürr, C., Vásquez, O.C.: Order constraints for single machine scheduling with non-linear cost. In: 16th Workshop on Algorithm Engineering and Experiments (ALENEX 2014), pp. 98–111. SIAM (2014). https://doi.org/10.1137/1.9781611973198.10

    Google Scholar 

  8. Gamow, G., Stern, M.: Puzzle-Math. Viking, New York (1958)

    MATH  Google Scholar 

  9. Gamzu, I., Segev, D.: A polynomial-time approximation scheme for the airplane refueling problem. J. Sched. 22(1), 119–135 (2019). https://doi.org/10.1007/s10951-018-0569-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Hammer, P.L., Johnson, E.L., Korte, B.H. (eds.) Annals of Discrete Mathematics, Discrete Optimization II, vol. 5, pp. 287–326. Elsevier (1979). https://doi.org/10.1016/S0167-5060(08)70356-X

    Google Scholar 

  11. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). https://doi.org/10.1109/TSSC.1968.300136

    Article  Google Scholar 

  12. Höhn, W., Jacobs, T.: An experimental and analytical study of order constraints for single machine scheduling with quadratic cost. In: Bader, D.A., Mutzel, D. (eds.) 2012 Proceedings of the Fourteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 103–117. Society for Industrial and Applied Mathematics (2012). https://doi.org/10.1137/1.9781611972924.11

    Chapter  Google Scholar 

  13. Höhn, W., Mestre, J., Wiese, A.: How unsplittable-flow-covering helps scheduling with job-dependent cost functions. Algorithmica 80(4), 1191–1213 (2018). https://doi.org/10.1007/s00453-017-0300-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, J., Hu, X., Luo, J., Cui, J.: A fast exact algorithm for airplane refueling problem (2019). arXiv:1910.03241

  15. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying speed. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 745–756. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_63

    Chapter  Google Scholar 

  16. Mondal, S.A., Sen, A.K.: An improved precedence rule for single machine sequencing problems with quadratic penalty. Eur. J. Oper. Res. 125(2), 425–428 (2000). https://doi.org/10.1016/S0377-2217(99)00207-6

    Article  MATH  Google Scholar 

  17. Sen, T., Dileepan, P., Ruparel, B.: Minimizing a generalized quadratic penalty function of job completion times: an improved branch-and-bound approach. Eng. Costs Prod. Econ. 18(3), 197–202 (1990). https://doi.org/10.1016/0167-188X(90)90121-W

    Article  Google Scholar 

  18. Vásquez, O.C.: For the airplane refueling problem local precedence implies global precedence. Optim. Lett. 9(4), 663–675 (2015). https://doi.org/10.1007/s11590-014-0758-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Hu, X., Luo, J., Cui, J. (2019). A Fast Exact Algorithm for Airplane Refueling Problem. In: Li, Y., Cardei, M., Huang, Y. (eds) Combinatorial Optimization and Applications. COCOA 2019. Lecture Notes in Computer Science(), vol 11949. Springer, Cham. https://doi.org/10.1007/978-3-030-36412-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36412-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36411-3

  • Online ISBN: 978-3-030-36412-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics