Skip to main content

Biological State Marker for Alcohol Consumption

  • Chapter
  • First Online:
Textbook of Addiction Treatment

Abstract

Alcohol-related disorders are common, expensive in their entire course, and often underdiagnosed. To facilitate early diagnosis and therapy of alcohol-related disorders and thus prevent later complications, questionnaires and biomarkers are useful. Indirect state markers such as gamma-glutamyl transpeptidase (GGT), mean corpuscular volume (MCV), and carbohydrate deficiency transferrin (CDT) are influenced by age, gender, various substances, and nonalcohol-related illnesses and do not cover the entire timeline for alcohol consumption. Direct state markers such as ethyl glucuronide (EtG), phosphatidylethanol (PEth), and fatty acid ethyl esters (FAEEs) have gained enormous interest in the last decades, as they are metabolites of alcohol becoming only positive in the presence of alcohol. As biomarkers with high sensitivity and specificity covering the complimentary timeline, they are already routinely in use and contribute to new perspectives in prevention, interdisciplinary cooperation, diagnosis, and therapy of alcohol-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO | Global status report on alcohol and health 2014. WHO; 2016.

    Google Scholar 

  2. Barrio P, Reynolds J, García-Altés A, Gual A, Anderson P. Social costs of illegal drugs, alcohol and tobacco in the European Union: a systematic review. Drug Alcohol Rev. 2017;36:578.

    Article  Google Scholar 

  3. Kohn R, Saxena S, Levav I, Saraceno B. The treatment gap in mental health care. Bull World Health Organ [Internet]. 2004 [cited 2014 Sept 17];82(11):858–66. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2623050&tool=pmcentrez&rendertype=abstract.

  4. Mann K, Batra A, Hoch E, Karl Mann R, Gerhard Reymann P, Lorenz G, et al. Screening, diagnose und Behandlung alkoholbezogener Störungen [Internet]. [cited 2019 Jun 4]. Available from: https://www.awmf.org/uploads/tx_szleitlinien/076-001l_S3-Leitlinie_Alkohol_2016-02.pdf.

  5. Mann K, Batra A, Fauth-Bühler M, Hoch E, and the Guideline Group. German guidelines on screening, diagnosis and treatment of alcohol use disorders. Eur Addict Res [Internet]. 2017 [cited 2019 Jun 4];23(1):45–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28178695.

  6. Conigrave KM, Degenhardt LJ, Whitfield JB, Saunders JB, Helander A, Tabakoff B, et al. CDT, GGT, and AST as markers of alcohol use: the WHO/ISBRA collaborative project. Alcohol Clin Exp Res [Internet]. 2002 [cited 2019 Feb 12];26(3):332–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11923585.

  7. Wurst FM, Wiesbeck GA, Metzger JW, Weinmann W. On sensitivity, specificity, and the influence of various parameters on ethyl glucuronide levels in urine--results from the WHO/ISBRA study. Alcohol Clin Exp Res [Internet]. 2004 [cited 2015 Sept 30];28(8):1220–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15318121.

  8. Høiseth G, Morini L, Polettini A, Christophersen A, Mørland J. Blood kinetics of ethyl glucuronide and ethyl sulphate in heavy drinkers during alcohol detoxification. Forensic Sci Int [Internet]. 2009 [cited 2019 Jan 31];188(1–3):52–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19395207.

  9. Thierauf A, Halter CC, Rana S, Auwaerter V, Wohlfarth A, Wurst FM, et al. Urine tested positive for ethyl glucuronide after trace amounts of ethanol. Addiction [Internet]. 2009 [cited 2019 Apr 23];104(12):2007–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19922567.

  10. Musshoff F, Albermann E, Madea B. Ethyl glucuronide and ethyl sulfate in urine after consumption of various beverages and foods--misleading results? Int J Legal Med [Internet]. 2010 [cited 2015 Apr 1];124(6):623–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20838803.

  11. Barrio P, Teixidor L, Rico N, Bruguera P, Ortega L, Bedini JL, et al. Urine ethyl glucuronide unraveling the reality of abstinence monitoring in a routine outpatient setting: a cross-sectional comparison with ethanol, self report and clinical judgment. Eur Addict Res [Internet]. 2016 [cited 2016 Jun 20];22(5):243–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27220985.

  12. Wurst FM, Haber PS, Wiesbeck G, Watson B, Wallace C, Whitfield JB, et al. Assessment of alcohol consumption among hepatitis C-positive people receiving opioid maintenance treatment using direct ethanol metabolites and self-report: a pilot study. Addict Biol [Internet]. 2008 [cited 2015 Apr 1];13(3–4):416–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17711559.

  13. Skipper GE, Weinmann W, Thierauf A, Schaefer P, Wiesbeck G, Allen JP, et al. Ethyl glucuronide: a biomarker to identify alcohol use by health professionals recovering from substance use disorders. Alcohol Alcohol [Internet]. Jan [cited 2015 Apr 1];39(5):445–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15289206.

  14. Dahl H, Hammarberg A, Franck J, Helander A. Urinary ethyl glucuronide and ethyl sulfate testing for recent drinking in alcohol-dependent outpatients treated with acamprosate or placebo. Alcohol Alcohol [Internet]. 2011 [cited 2015 Apr 1];46(5):553–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616946.

  15. Erim Y, Böttcher M, Dahmen U, Beck O, Broelsch CE, Helander A. Urinary ethyl glucuronide testing detects alcohol consumption in alcoholic liver disease patients awaiting liver transplantation. Liver Transplant [Internet]. 2007 [cited 2019 Apr 23];13(5):757–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17457868.

  16. Graham AE, Beatty JR, Rosano TG, Sokol RJ, Ondersma SJ. Utility of Commercial Ethyl Glucuronide (EtG) and Ethyl Sulfate (EtS) testing for detection of lighter drinking among women of childbearing years. J Stud Alcohol Drugs [Internet]. 2017 [cited 2019 Apr 23];78(6):945–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29087831.

  17. Weinmann W, Schaefer P, Thierauf A, Schreiber A, Wurst FM. Confirmatory analysis of ethylglucuronide in urine by liquid-chromatography/electrospray ionization/tandem mass spectrometry according to forensic guidelines. J Am Soc Mass Spectrom [Internet]. 2004 [cited 2019 Jan 31];15(2):188–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14766286.

  18. Leickly E, Skalisky J, McPherson S, Orr MF, McDonell MG. High agreement between benchtop and point-of-care dipcard tests for ethyl glucuronide. Ther Drug Monit [Internet]. 2017 [cited 2019 Feb 1];39(4):461–2. Available from: http://insights.ovid.com/crossref?an=00007691-201708000-00025.

  19. Barrio P, Teixidor L, Ortega L, Lligoña A, Rico N, Bedini JL, et al. Filling the gap between lab and clinical impact: an open randomized diagnostic trial comparing urinary ethylglucuronide and ethanol in alcohol dependent outpatients. Drug Alcohol Depend [Internet]. 2018 [cited 2018 Mar 27];183:225–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29291550.

  20. Jatlow PI, Agro A, Wu R, Nadim H, Toll BA, Ralevski E, et al. Ethyl glucuronide and ethyl sulfate assays in clinical trials, interpretation, and limitations: results of a dose ranging alcohol challenge study and 2 clinical trials. Alcohol Clin Exp Res [Internet]. 2014 [cited 2015 Apr 1];38(7):2056–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24773137.

  21. Yegles M, Labarthe A, Auwärter V, Hartwig S, Vater H, Wennig R, et al. Comparison of ethyl glucuronide and fatty acid ethyl ester concentrations in hair of alcoholics, social drinkers and teetotallers. Forensic Sci Int [Internet]. 2004 [cited 2019 Feb 4];145(2–3):167–73. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0379073804002476.

  22. Aradottir S, Asanovska G, Gjerss S, Hansson P, Alling C. Phosphatidylethanol (PEth) concentrations in blood are correlated to reported alcohol intake in alcohol-dependent patients. Alcohol Alcohol [Internet]. 2006 [cited 2019 Apr 23];41(4):431–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16624837.

  23. Schröck A, Thierauf-Emberger A, Schürch S, Weinmann W. Phosphatidylethanol (PEth) detected in blood for 3 to 12 days after single consumption of alcohol-a drinking study with 16 volunteers. Int J Legal Med [Internet]. 2017 [cited 2019 Feb 1];131(1):153–60. Available from: http://link.springer.com/10.1007/s00414-016-1445-x.

  24. Faller A, Richter B, Kluge M, Koenig P, Seitz HK, Thierauf A, et al. LC-MS/MS analysis of phosphatidylethanol in dried blood spots versus conventional blood specimens. Anal Bioanal Chem [Internet]. 2011 [cited 2017 Feb 2];401(4):1163–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21743983.

  25. Wurst FM, Thon N, Aradottir S, Hartmann S, Wiesbeck GA, Lesch O, et al. Phosphatidylethanol: normalization during detoxification, gender aspects and correlation with other biomarkers and self-reports. Addict Biol [Internet]. 2010 [cited 2019 Feb 1];15(1):88–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20002024.

  26. Viel G, Boscolo-Berto R, Cecchetto G, Fais P, Nalesso A, Ferrara S. Phosphatidylethanol in blood as a marker of chronic alcohol use: a systematic review and meta-analysis. Int J Mol Sci [Internet]. 2012 [cited 2019 Jan 31];13(12):14788–812. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23203094.

  27. Stewart SH, Reuben A, Brzezinski WA, Koch DG, Basile J, Randall PK, et al. Preliminary evaluation of phosphatidylethanol and alcohol consumption in patients with liver disease and hypertension. Alcohol Alcohol [Internet]. 2009 [cited 2019 Feb 13];44(5):464–7. Available from: https://academic.oup.com/alcalc/article-lookup/doi/10.1093/alcalc/agp039.

  28. Luginbühl M, Weinmann W, Butzke I, Pfeifer P. Monitoring of direct alcohol markers in alcohol use disorder patients during withdrawal treatment and successive rehabilitation. Drug Test Anal [Internet]. 2019 [cited 2019 May 16]; Available from: http://doi.wiley.com/10.1002/dta.2567.

  29. Viel G, Boscolo-Berto R, Cecchetto G, Fais P, Nalesso A, Ferrara SD. Phosphatidylethanol in blood as a marker of chronic alcohol use: a systematic review and meta-analysis. Int J Mol Sci [Internet]. 2012 [cited 2019 Feb 1];13(11):14788–812. Available from: http://www.mdpi.com/1422-0067/13/11/14788.

  30. Schröck A, Wurst FM, Thon N, Weinmann W. Assessing phosphatidylethanol (PEth) levels reflecting different drinking habits in comparison to the alcohol use disorders identification test – C (AUDIT-C). Drug Alcohol Depend [Internet]. 2017 [cited 2019 Jan 31];178:80–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28645063.

  31. Nguyen VL, Fitzpatrick M. Should phosphatidylethanol be currently analysed using whole blood, dried blood spots or both? Clin Chem Lab Med [Internet]. 2019 [cited 2019 May 16];57(5):617–22. Available from: http://www.degruyter.com/view/j/cclm.ahead-of-print/cclm-2018-0667/cclm-2018-0667.xml.

  32. Faller A, Richter B, Kluge M, Koenig P, Seitz HK, Skopp G. Stability of phosphatidylethanol species in spiked and authentic whole blood and matching dried blood spots. Int J Legal Med [Internet]. 2013 [cited 2019 Feb 1];127(3):603–10. Available from: http://link.springer.com/10.1007/s00414-012-0799-y.

  33. 2016 consensus for the use of alcohol markers in hair for assessment of both abstinence and chronic excessive alcohol consumption [Internet]. [cited 2019 May 13]. Available from: https://www.soht.org/images/pdf/Revision2016_Alcoholmarkers.pdf.

  34. Suesse S, Pragst F, Mieczkowski T, Selavka CM, Elian A, Sachs H, et al. Practical experiences in application of hair fatty acid ethyl esters and ethyl glucuronide for detection of chronic alcohol abuse in forensic cases. Forensic Sci Int [Internet]. 2012 [cited 2019 Feb 4];218(1–3):82–91. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0379073811004816.

  35. Kummer N, Wille SMR, Di Fazio V, Ramírez Fernández MDM, Yegles M, Lambert WEE, et al. Impact of the grinding process on the quantification of ethyl glucuronide in hair using a validated UPLC-ESI-MS-MS method. J Anal Toxicol [Internet]. 2015 [cited 2019 Feb 4];39(1):17–23. Available from: http://academic.oup.com/jat/article/39/1/17/2797999/Impact-of-the-Grinding-Process-on-the.

  36. Hartwig S, Auwärter V, Pragst F. Effect of hair care and hair cosmetics on the concentrations of fatty acid ethyl esters in hair as markers of chronically elevated alcohol consumption. Forensic Sci Int. 2003;131(2–3):90–7. https://doi.org/10.1016/s0379-0738(02)00412-7.

  37. Thon N, Weinmann W, Yegles M, Preuss U, Wurst FM. Direct metabolites of ethanol as biological markers of alcohol use: basic aspects and applications. Fortschr Neurol Psychiatr [Internet]. 2013 [cited 2019 Apr 24];81(9):493–502. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0033-1335586.

  38. Topic A, Djukic M. Diagnostic characteristics and application of alcohol biomarkers. Clin Lab [Internet]. 2013 [cited 2019 May 13];59(3–4):233–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23724610.

  39. Puukka K, Hietala J, Koivisto H, Anttila P, Bloigu R, Niemelä O. Additive effects of moderate drinking and obesity on serum-glutamyl transferase activity 1–3 [Internet]. Am J Clin Nutr. 2006 [cited 2019 May 13]; 83. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1033.9468&rep=rep1&type=pdf.

  40. Neumann T, Spies C. Use of biomarkers for alcohol use disorders in clinical practice. Addiction [Internet]. 2003 [cited 2019 May 13];98 Suppl 2:81–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14984245.

  41. Koivisto H, Hietala J, Anttila P, Parkkila S, Niemelä O. Long-term ethanol consumption and macrocytosis: diagnostic and pathogenic implications. J Lab Clin Med [Internet]. 2006 [cited 2019 May 13];147(4):191–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022214305004142.

  42. Allen JP, Marques P, Wurst F. Biomarkers of alcohol use: their nature, strengths, and limitations. Mil Med [Internet]. 2008 [cited 2019 May 13];173(8):v–viii. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18751582.

  43. Koch H, Meerkerk G-J, Zaat JOM, Ham MF, Scholten RJPM, Assendelft WJJ. Accuracy of carbohydrate-deficient transferrin in the detection of excessive alcohol consumption: a systematic review. Alcohol Alcohol [Internet]. 2004 [cited 2019 May 16];39(2):75–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14998820.

  44. Hackler R, Arndt T, Helwig-Rolig A, Kropf J, Steinmetz A, Schaefer JR. Investigation by isoelectric focusing of the initial carbohydrate-deficient transferrin (CDT) and non-CDT transferrin isoform fractionation step involved in determination of CDT by the ChronAlcoI.D. assay. Clin Chem [Internet]. 2000 [cited 2019 May 16];46(4):483–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10759472.

  45. Niemelä O. Biomarker-based approaches for assessing alcohol use disorders. Int J Environ Res Public Health [Internet]. 2016 [cited 2019 May 13];13(2):166. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26828506.

  46. Fleming MF, Anton RF, Spies CD. A review of genetic, biological, pharmacological, and clinical factors that affect carbohydrate-deficient transferrin levels. Alcohol Clin Exp Res [Internet]. 2004 [cited 2019 May 13];28(9):1347–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15365305.

  47. Bortolotti F, De Paoli G, Tagliaro F. Carbohydrate-deficient transferrin (CDT) as a marker of alcohol abuse: a critical review of the literature 2001–2005. J Chromatogr B [Internet]. 2006 [cited 2019 May 13];841(1–2):96–109. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16725384.

  48. Lucas DL, Brown RA, Wassef M, Giles TD. Alcohol and the cardiovascular system. J Am Coll Cardiol [Internet]. 2005 [cited 2019 May 16];45(12):1916–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15963387.

  49. Moore RD, Pearson TA. Moderate alcohol consumption and coronary artery disease. A review. Medicine (Baltimore) [Internet]. 1986 [cited 2019 May 16];65(4):242–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3523113.

  50. Niemelä O. Biomarkers in alcoholism. Clin Chim Acta. 2007;377(1–2):39–49.

    Google Scholar 

  51. Gilg T. Rechtsmedizinische Aspekte von Alkohol und Alkoholismus. In: Singer MV, Teyssen S (Eds.) Alkohol und Alkoholfolgekrankheiten. Springer Berlin, Heidelberg, 1995. pp. 526–51.

    Google Scholar 

  52. Sillanaukee P, Strid N, Allen JP, Litten RZ. Possible reasons why heavy drinking increases carbohydrate-deficient transferrin. Alcohol Clin Exp Res. 2001;25(1):34–40.

    Google Scholar 

  53. Brinkmann B, Köhler H, Banaschak S, Berg A, Eikelmann B, West A, et al. ROC analysis of alcoholism markers--100% specificity. Int J Legal Med [Internet]. 2000 [cited 2019 May 13];113(5):293–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11009066.

  54. Harasymiw J, Seaberg J, Bean P. Detection of alcohol misuse using a routine test panel: the early detection of alcohol consumption (EDAC) test. Alcohol Alcohol [Internet]. 2004 [cited 2019 May 16];39(4):329–35. Available from: https://academic.oup.com/alcalc/article-lookup/doi/10.1093/alcalc/agh061.

  55. Niemelä O, Alatalo P. Biomarkers of alcohol consumption and related liver disease. Scand J Clin Lab Invest [Internet]. 2010 [cited 2019 May 16];70(5):305–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20470213.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wurst, F.M. et al. (2021). Biological State Marker for Alcohol Consumption. In: el-Guebaly, N., Carrà, G., Galanter, M., Baldacchino, A.M. (eds) Textbook of Addiction Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-36391-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36391-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36390-1

  • Online ISBN: 978-3-030-36391-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics