Skip to main content

Bright Oceans: Spectral Differentiation of Whitecaps, Sea Ice, Plastics, and Other Flotsam

  • Chapter
  • First Online:
Recent Advances in the Study of Oceanic Whitecaps

Abstract

Whitecaps are evident in ocean color imagery, but are currently removed as part of the atmospheric correction techniques. Whitecaps enhance the backscattering of light from the ocean surface and appear “white” or having spectrally flat reflectance in the visible wavelengths (400–700 nm). However, measurements shows that the whitecap spectral reflectance is not flat in the near infrared and short wave infrared and contains dips and peaks related to liquid water absorption that are related to the intensity of the whitecap signal. This signal can be potentially used to assess whitecaps from satellites. However, the first step in such an algorithm will be to differentiate whitecaps from other constituents that also serve to elevate spectral reflectance. Here, we describe the spectral properties of constituents found at or above the sea surface including whitecaps, ocean plastics, sea ice and clouds which may appear white to the human eye, but have unique spectral signatures that can be used to quantitatively differentiate them using optimized sensors with the appropriate wavebands. The aim is to develop sensors and approaches that can be used to accurately identify whitecaps and these other constituents, improve the atmospheric correction process, and develop new products from ocean color imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anguelova, M. D., & Webster, F. (2006). Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. Journal of Geophysical Research: Oceans, 1978–2012, 111.

    Google Scholar 

  • Bailey, S. W., Franz, B. A., & Werdell, P. J. (2010). Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Optics Express, 18, 7521–7527.

    Article  Google Scholar 

  • Balch, W. M., Gordon, H. R., Bowler, B. C., Drapeau, D. T., & Booth, E. S. (2005). Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. Journal of Geophysical Research, 110, C07001.

    Article  Google Scholar 

  • Bergmann, M., Gutow, L., & Klages, M. (2015). Marine anthropogenic litter. Springer.

    Google Scholar 

  • Brumer, S. E., Zappa, C. J., Brooks, I. M., Tamura, H., Brown, S. M., Blomquist, B. W., Fairall, C. W., & Cifuentes-Lorenzen, A. (2017). Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and HiWinGS. Journal of Physical Oceanography, 47, 2211–2235.

    Article  Google Scholar 

  • Cloutis, E. A. (1989). Spectral reflectance properties of hydrocarbons: Remote-sensing implications. Science, 245, 165–168.

    Article  Google Scholar 

  • Dierssen, H. M. (2013). Overview of hyperspectral remote sensing for mapping marine benthic habitats from airborne and underwater sensors. In Imaging spectrometry XVIII. Proceedings of the SPIE (pp. 1–7).

    Google Scholar 

  • Dierssen, H. M. (2019). Hyperspectral measurements, parameterizations, and atmospheric correction of whitecaps and foam from visible to shortwave infrared for ocean color remote sensing. Frontiers in Earth Science, 7, 14.

    Article  Google Scholar 

  • Fogarty, M. C., Fewings, M. R., Paget, A. C., & Dierssen, H. M. (2018). The influence of a sandy substrate, seagrass, or highly turbid water on Albedo and surface heat flux. Journal of Geophysical Research: Oceans, 123, 53–73.

    Google Scholar 

  • Frouin, R., Schwindling, M., & Deschamps, P.-Y. (1996). Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications. Journal of Geophysical Research: Oceans (1978–2012), 101, 14361–14371.

    Article  Google Scholar 

  • Gao, B. C., Montes, M. J., Li, R. R., Dierssen, H. M., & Davis, C. O. (2007). An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region. IEEE Transactions on Geoscience and Remote Sensing, 45, 1835–1843.

    Article  Google Scholar 

  • Garaba, S., Aitken, J., Slat, B., Dierssen, H. M., Lebreton, L., Zielinski, O., & Reisser, J. (2018). Sensing ocean plastics with an airborne hyperspectral shortwave IR imager. Environmental Science & Technology, 52, 11699–11707. https://doi.org/10.1021/acs.est.8b02855.

    Article  Google Scholar 

  • Garaba, S. P., & Dierssen, H. M. (2018). An airborne remote sensing case study of synthetic hydrocarbon detection using short wave infrared absorption features identified from marine-harvested macro-and microplastics. Remote Sensing of Environment, 205, 224–235.

    Article  Google Scholar 

  • Green, R. O., Dozier, J., Roberts, D., & Painter, T. (2002). Spectral snow-reflectance models for grain-size and liquid-water fraction in melting snow for the solar-reflected spectrum. Annals of Glaciology, 34, 71–73.

    Article  Google Scholar 

  • Huth-Fehre, T., Feldhoff, R., Kantimm, T., & others. (1995). NIR-remote sensing and artificial neural networks for rapid identification of post consumer plastics. Journal of Molecular Structure, 348, 143–146.

    Article  Google Scholar 

  • Ibrahim, A., Franz, B., Ahmad, Z., Healy, R., Knobelspiesse, K., Gao, B.-C., Proctor, C., & Zhai, P.-W. (2018). Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean (HICO). Remote Sensing of Environment, 204, 60–75.

    Article  Google Scholar 

  • Khan, A. L., Dierssen, H., Schwarz, J. P., Schmitt, C., Chlus, A., Hermanson, M., Painter, T. H., & McKnight, D. M. (2017). Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway. Journal of Geophysical Research: Atmospheres, 122, 1767–1778.

    Google Scholar 

  • Maximenko, N., J. Arvesen, G. Asner, and others. 2017. Remote sensing of marine debris to study dynamics, balances and trends. In Community white paper produced at the workshop on mission concepts for marine debris sensing (p. 22).

    Google Scholar 

  • Monahan, E. C., & Mac Niocaill, G. (2012). Oceanic whitecaps: And their role in air-sea exchange processes. Springer Science & Business Media.

    Google Scholar 

  • Moore, K. D., Voss, K. J., & Gordon, H. R. (2000). Spectral reflectance of whitecaps: Their contribution to water-leaving radiance. Journal of Geophysical Research: Oceans (1978–2012), 105, 6493–6499.

    Article  Google Scholar 

  • Mouroulis, P., Gorp, B. V., Green, R., Dierssen, H. M., Wilson, D. W., Eastwood, M., Boardman, J., Gao, B., Cohen, D., Franklin, B., Loya, F., Lundeen, S., Mazer, A., McCubbin, I., Randall, D., Richardson, B., Rodriguez, J. I., Sarture, C., Urquiza, E., Vargas, R., White, V., & Yee, K. (2013). The Portable Remote Imaging Spectrometer (PRISM) coastal ocean sensor: Design, characteristics and first flight results. Applied Optics, 53(7), 1363–1380.

    Google Scholar 

  • Randolph, K., Dierssen, H. M., Cifuentes-Lorenzen, A., Balch, W. M., Monahan, E. C., Zappa, C. J., Drapeau, D. T., & Bowler, B. (2017). Novel methods for optically measuring whitecaps under natural wave-breaking conditions in the Southern Ocean. Journal of Atmospheric and Oceanic Technology, 34, 533–554.

    Article  Google Scholar 

  • Randolph, K., Dierssen, H. M., Twardowski, M., Cifuentes-Lorenzen, A., & Zappa, C. J. (2014). Optical measurements of small deeply penetrating bubble populations generated by breaking waves in the Southern Ocean. Journal of Geophysical Research: Oceans., 119, 757–776.

    Google Scholar 

  • Rottgers, R., Doerffer, R., McKee, D., & Schonfeld, W. (2011). Algorithm theoretical basis document: The water optical properties processor (WOPP). Tech. rep., Helmholtz-Zentrum Geesthacht, University of Strathclyde, Geesthacht.

    Google Scholar 

  • Scanlon, B., & Ward, B. (2016). The influence of environmental parameters on active and maturing oceanic whitecaps. Journal of Geophysical Research: Oceans, 121, 3325–3336.

    Google Scholar 

  • Whitlock, C. H., Bartlett, D. S., & Gurganus, E. A. (1982). Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols. Geophysical Research Letters, 9, 719–722.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the intellectual contributions of Dr. Edward Monahan broadly to the field of whitecaps and the many fruitful discussions and interactions with him over the years. Funding was provided by NASA Ocean Biology and Biogeochemistry through the PACE project (NNX15AC32G) and Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 417276871.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi M. Dierssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dierssen, H.M., Garaba, S.P. (2020). Bright Oceans: Spectral Differentiation of Whitecaps, Sea Ice, Plastics, and Other Flotsam. In: Vlahos, P., Monahan, E. (eds) Recent Advances in the Study of Oceanic Whitecaps. Springer, Cham. https://doi.org/10.1007/978-3-030-36371-0_13

Download citation

Publish with us

Policies and ethics