Skip to main content

Global Whitecap Coverage from Satellite Remote Sensing and Wave Modelling

  • Chapter
  • First Online:
Recent Advances in the Study of Oceanic Whitecaps

Abstract

For decades, photographic measurements of whitecap coverage W have been the workhorse for characterizing oceanic whitecaps and parameterizing air-sea processes associated with them. The detail that in situ W data provide is now complemented with the possibilities offered by long-term, consistent determination of W on a global scale from passive microwave remote sensing and from third generation wave modelling. This chapter gives an overview of the development and present status of obtaining the whitecap fraction with remote sensing and wave models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, M. F. M. A., Anguelova, M. D., Manders, A. M. M., Schaap, M., & de Leeuw, G. (2016). Parameterization of oceanic whitecap fraction based on satellite observations. Atmospheric Chemistry and Physics, 16, 13725–13751. https://doi.org/10.5194/acp-16-13725-2016.

    Article  Google Scholar 

  • Anguelova, M. D. (2008). Complex dielectric constant of sea foam at microwave frequencies. Journal of Geophysical Research, 113, C08001. https://doi.org/10.1029/2007JC004212.

    Article  Google Scholar 

  • Anguelova, M. D., & Bettenhausen, M. H. (2019). Whitecap fraction from satellite measurements: Algorithm description. Journal of Geophysical Research, 124, 1827–1857. https://doi.org/10.1029/2018JC014630.

  • Anguelova, M. D., & Gaiser, P. W. (2011). Skin depth at microwave frequencies of sea foam layers with vertical profile of void fraction. Journal of Geophysical Research, 116, C11002. https://doi.org/10.1029/2011JC007372.

    Article  Google Scholar 

  • Anguelova, M. D., & Gaiser, P. W. (2012). Dielectric and radiative properties of sea foam at microwave frequencies: Conceptual understanding of foam emissivity. Remote Sensing, 4, 1162–1189. https://doi.org/10.3390/rs4051162.

    Article  Google Scholar 

  • Anguelova, M. D., & Gaiser, P. W. (2013). Microwave emissivity of sea foam layers with vertically inhomogeneous dielectric properties. Remote Sensing of Environment, 139, 81–96. https://doi.org/10.1016/j.rse.2013.07.017.

    Article  Google Scholar 

  • Anguelova, M. D., & Hwang, P. A. (2016). Using energy dissipation rate to obtain active whitecap fraction. Journal of Physical Oceanography, 46, 461–481. https://doi.org/10.1175/JPO-D-15-0069.1.

    Article  Google Scholar 

  • Anguelova, M. D., & Webster, F. (2006). Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. Journal of Geophysical Research, 111, C03017. https://doi.org/10.1029/2005JC003158.

    Article  Google Scholar 

  • Ardhuin, F., Rogers, E., Babanin, A., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., & Collard, F. (2010). Semi-empirical dissipation source functions for ocean waves: Part I, definitions, calibration and validations. Journal of Physical Oceanography, 40, 1917–1941.

    Article  Google Scholar 

  • Asher, W. E., et al. (1995). Measurement of gas transfer, whitecap coverage, and brightness temperature in a surf pool: An overview of WABEX-93. In B. Jähne & E. Monahan (Eds.), Air-water gas transfer (pp. 205–216). Hanau: AEON Verlag.

    Google Scholar 

  • Asher, W. E., Wang, Q., Monahan, E. C., & Smith, P. M. (1998). Estimation of air--sea gas transfer velocities from apparent microwave brightness temperature. Marine Technology Society Journal, 32, 32–40.

    Google Scholar 

  • Banner, M. L., Jones, I. S. F., & Trinder, J. C. (1989). Wavenumber spectra of short gravity waves. Journal of Fluid Mechanics, 198, 321–344. https://doi.org/10.1017/S0022112089000157.

    Article  Google Scholar 

  • Banner, M. L., Gemmrich, J. R., & Farmer, D. M. (2002). Multiscale measurement of ocean wave breaking probability. Journal of Physical Oceanography, 32, 3364–3374.

    Article  Google Scholar 

  • Banner, M. L., & Peregrine, D. H. (1993). Wave breaking in deep water. Annual Review of Fluid Mechanics, 25(1), 373–397. https://doi.org/10.1146/annurev.fl.25.010193.002105.

    Article  Google Scholar 

  • Bettenhausen, M. H., Smith, C .K., Bevilacqua, R. M., Wang, N.–Y., Gaiser, P. W., and Cox, S. (2006). A nonlinear optimization algorithm for WindSat wind vector retrievals. Transactions on Geoscience and Remote Sensing, 44(3), 597–610. https://doi.org/10.1109/TGRS.2005.862504.

  • Bobak, J. P., Asher, W. E., Dowgiallo, D. J., & Anguelova, M. D. (2011). Aerial radiometric and video measurements of whitecap coverage. Transactions on Geoscience and Remote Sensing, 49(6), 2183–2193. https://doi.org/10.1109/TGRS.2010.2103565.

    Article  Google Scholar 

  • Bondur, V., & Sharkov, E. (1982). Statistical properties of whitecaps on a rough sea. Oceanology, 22, 274–279.

    Google Scholar 

  • Bourassa, M. (2004). An improved sea state dependency for surface stress derived from in situ and remotely sensed winds. Advances in Space Research, 33, 1136–1142.

    Article  Google Scholar 

  • Brumer, S. E., Zappa, C. J., Brooks, I. M., Tamura, H., Brown, S. M., Blomquist, B. W., Fairall, C. W., & Cifuentes-Lorenzen, A. (2017). Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and HiWinGS. Journal of Physical Oceanography, 47, 2211–2235. https://doi.org/10.1175/JPO-D-17-0005.1.

    Article  Google Scholar 

  • Cardone, V. J. (1969). Specification of the wind distribution in the marine boundary layer for wave forecasting (Tech. Rep. 69–1, Geophys) (131 pp). Sci. Lab: New York University.

    Book  Google Scholar 

  • Chen, D., Tsang, L., Zhou, L., Reising, S. C., Asher, W. E., Rose, L. A., Ding, K. H., & Chen, C. T. (2003). Microwave emission and scattering of foam based on Monte Carlo simulations of dense media. IEEE Transactions on Geoscience and Remote Sensing, 41, 782–790.

    Article  Google Scholar 

  • de Leeuw, G., Andreas, E. L , Anguelova, M. D., Fairall, C. W., Lewis, E. R., O’Dowd, C. D., Schulz, M., and Schwartz, S. E. (2011). Production flux of sea-spray aerosol. Reviews of Geophysics, 49, RG2001. https://doi.org/10.1029/2010RG000349.

  • Donelan, M., Dobson, F., Smith, S., & Anderson, R. (1993). On the dependence of sea surface roughness on wave development. Journal of Physical Oceanography, 23, 2143–2149.

    Article  Google Scholar 

  • Drazen, D. A., Melville, W. K., & Lenain, L. (2008). Inertial scaling of dissipation in unsteady breaking waves. Journal of Fluid Mechanics, 611, 307332. https://doi.org/10.1017/S0022112008002826.

    Article  Google Scholar 

  • Droppleman, J. (1970). Apparent microwave emissivity of sea foam. Journal of Geophysical Research, 75, 696–698.

    Article  Google Scholar 

  • ECMWF. (2013). IFS documentation CY40r1, Part VII: ECMWF Wave Model. ECMWF Model Doc., 79 p., http://www.ecmwf.int/sites/default/files/IFS_CY40R1_Part7.pdf

  • Fairall, C., Hare, J., Edson, J., & McGillis, W. (2000). Parameterization and micrometeorological measurement of Air–Sea gas transfer. Boundary-Layer Meteorology, 96, 63–106.

    Google Scholar 

  • Gaiser, P. W., St Germain, K. M., Twarog, E. M., Poe, G. A., Purdy, W., Richardson, D., et al. (2004). The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. Transactions on Geoscience and Remote Sensing, 42, 2347–2361. https://doi.org/10.1109/TGRS.2004.836867.

    Article  Google Scholar 

  • Goddijn-Murphy, L., Woolf, D. K., & Callaghan, A. H. (2011). Parameterizations and algorithms for oceanic whitecap coverage. Journal of Physical Oceanography, 41, 742–756.

    Article  Google Scholar 

  • Hanson, J. L., & Phillips, O. M. (1999). Wind sea growth and dissipation in the open ocean. Journal of Physical Oceanography, 29, 1633–1648.

    Article  Google Scholar 

  • Hasselmann, K. (1974). On the spectral dissipation of ocean waves due to whitecapping. Boundary-Layer Meteorology, 6, 107–127.

    Article  Google Scholar 

  • Hwang, P. A., & Sletten, M. A. (2008). Energy dissipation of wind-generated waves and whitecap coverage. Journal of Geophysical Research, 113, C02012. https://doi.org/10.1029/2007JC004277. (Corrigendum 2009, 114, C02015. https://doi.org/10.1029/2008JC005244).

    Article  Google Scholar 

  • Janssen, P. A. E. M., Lionello, P., Reistad, M., & Hollingsworth, A. (1989). Hindcasts and data assimilation studies with the WAM model during the Seasat period. Journal of Geophysical Research, C94, 973–993.

    Article  Google Scholar 

  • Jessup, A. T., Zappa, C. J., Loewen, M. R., & Hesany, V. (1997). Infrared remote sensing of breaking waves. Nature, 385, 52–55.

    Article  Google Scholar 

  • Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., & Janssen, P. A. E. M. (1994). Dynamics and modeling of ocean waves (532 pp). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kraan, C., Oost, W., & Janssen, P. (1996). Wave energy dissipation by whitecaps. Journal of Atmospheric and Oceanic Technology, 13, 262–267.

    Article  Google Scholar 

  • Leckler, F., Ardhuin, F., Filipot, J. F., & Mironov, A. (2013). Dissipation source terms and whitecap statistics. Ocean Modelling, 70(2013), 62–74. https://doi.org/10.1016/j.ocemod.2013.03.007.

    Article  Google Scholar 

  • Meissner, T., & Wentz, F. J. (2012). The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. Transactions on Geoscience and Remote Sensing, 50(8), 3004–3026. https://doi.org/10.1109/TGRS.2011.2179662.

    Article  Google Scholar 

  • Melville, W., & Matusov, P. (2002). Distribution of breaking waves at the ocean surface. Nature, 417, 58–63.

    Article  Google Scholar 

  • Militskii, Y. A., Raizer, V. Y., Sharkov, E. A., & Etkin, V. S. (1978). Thermal radio emission from foam structures. Soviet Physics – Technical Physics, 23, 601–602.

    Google Scholar 

  • Mironov, A. S., & Dulov, V. A. (2008). Detection of wave breaking using sea surface video records. Measurement Science and Technology, 19, 015405. https://doi.org/10.1088/0957-0233/19/1/015405.

    Article  Google Scholar 

  • Monahan, E. C. (1971). Oceanic whitecaps. Journal of Physical Oceanography, 1, 139–144.

    Article  Google Scholar 

  • Monahan, E. C., Hooker, G., Zappa, C. J. (2015). The latitudinal variation in the wind-speed parameterization of oceanic whitecap coverage; implications for global modelling of air-sea gas flux and sea surface aerosol generation. In: 19th Conference on Air-Sea Interaction, January 04–08, Phoenix, AZ.

    Google Scholar 

  • Monahan, E. C., & Lu, M. (1990). Acoustically relevant bubble assemblages and their dependence on meteorological parameters. Journal of Oceanic Engineering, 15(4), 340–349. https://doi.org/10.1109/48.103530.

    Article  Google Scholar 

  • Monahan, E. C., & O’Muircheartaigh, I. (1980). Optimal power-law description of oceanic whitecap coverage dependence on wind speed. Journal of Physical Oceanography, 10, 2094–2099. https://doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2.

    Article  Google Scholar 

  • Monahan, E. C., & O’Muircheartaigh, I. (1986). Whitecaps and the passive remote sensing of the ocean surface. International Journal of Remote Sensing, 7, 627–642. https://doi.org/10.1080/01431168608954716.

    Article  Google Scholar 

  • Monahan, E. C., & Woolf, D. K. (1989). Comments on variations of whitecap coverage with wind stress and water temperature. Journal of Physical Oceanography, 19, 706–709.

    Article  Google Scholar 

  • Nordberg, W., Conaway, J., Ross, D., & Wilheit, T. (1971). Measurements of microwave emission from a foam-covered, wind-driven sea. Journal of the Atmospheric Sciences, 28, 429–435.

    Google Scholar 

  • Padmanabhan, S., Reising, S. C., Asher, W. E., Rose, L. A., & Gaiser, P. W. (2006). Effects of foam on ocean surface microwave emission inferred from radiometric observations of reproducible breaking waves. IEEE Transactions on Geoscience and Remote Sensing, 44, 569–583.

    Article  Google Scholar 

  • Paget, A. C., Bourassa, M. A., & Anguelova, M. D. (2015). Comparing in situ and satellite-based observations of oceanic whitecaps. Journal of Geophysical Research, 120, 2826–2843. https://doi.org/10.1002/2014JC010328.

    Article  Google Scholar 

  • Pandey, P., & Kakar, R. (1982). An empirical microwave emissivity model for a foam-covered sea. Journal of Oceanic Engineering, 7(3), 135–140. https://doi.org/10.1109/JOE.1982.1145527.

    Article  Google Scholar 

  • Phillips, O. M. (1985). Spectral and statistical properties of the equilibrium range in wind-generated gravity-waves. Journal of Fluid Mechanics, 156, 505–531.

    Article  Google Scholar 

  • Potter, H., Smith, G. B., Snow, C. M., Dowgiallo, D. J., Bobak, J. P., & Anguelova, M. D. (2015). Whitecap lifetime stages from infrared imagery with implications for microwave radiometric measurements of whitecap fraction. Journal of Geophysical Research, 120, 7521–7537. https://doi.org/10.1002/2015JC011276.

    Article  Google Scholar 

  • Randolph, K., Dierssen, H. M., Cifuentes-Lorenzen, A., Balch, W., Monahan, E. C., Zappa, C., Drapeau, D., & Bowler, B. (2017). Novel methods for optically measuring whitecaps under natural wave breaking conditions in the Southern Ocean. Journal of Atmospheric and Oceanic Technology, 34, 533–554. https://doi.org/10.1175/JTECH-D-16-0086.1.

    Article  Google Scholar 

  • Reul, N., & Chapron, B. (2003). A model of sea-foam thickness distribution for passive microwave remote sensing applications. Journal of Geophysical Research, 108(C10), 3321. https://doi.org/10.1029/2003JC001887.

    Article  Google Scholar 

  • Rogers, W. E., Anguelova, M. D., Hwang, P. A. (2012). Satellite radiometer (Windsat) estimates of whitecap coverage interpreted using a global numerical wave model hindcast. Abstract OS13E-1780 presented at 2012 fall meeting, AGU, San Francisco, Calif., 3–7 Dec.

    Google Scholar 

  • Rose, L. A., Asher, W. E., Reising, S. C., Gaiser, P. W., St Germain, K. M., Dowgiallo, D. J., Horgan, K. A., Farquharson, G., & Knapp, E. J. (2002). Radiometric measurements of the microwave emissivity of foam. IEEE Transactions on Geoscience and Remote Sensing, 40, 2619–2625.

    Article  Google Scholar 

  • Ross, D., & Cardone, V. (1974). Observations of oceanic whitecaps and their relation to remote measurements of surface wind speed. Journal of Geophysical Research, 79, 444–452.

    Article  Google Scholar 

  • Salisbury, D. J., Anguelova, M. D., & Brooks, I. M. (2013). On the variability of whitecap fraction using satellite-based observations. Journal of Geophysical Research, 118, 6201–6222. https://doi.org/10.1002/2013JC008797.

    Article  Google Scholar 

  • Scanlon, B., Breivik, Ø., Bidlot, J.-R., Janssen, P., Callaghan, A., & Ward, B. (2016). Modelling whitecap coverage with a wave model. Journal of Physical Oceanography, 46, 887–894. https://doi.org/10.1175/JPO-D-15-0158.1.

  • Smith, P. M. (1988). The emissivity of sea foam at 19 and 37 GHz. IEEE Transactions on Geoscience and Remote Sensing, 26, 541–547.

    Article  Google Scholar 

  • Snyder, R., & Kennedy, R. (1983). On the formation of whitecaps by a threshold mechanism. Part I: Basic formalism. Journal of Physical Oceanography, 13, 1482–1492.

    Article  Google Scholar 

  • Stogryn, A. P. (1967). The apparent temperature of the sea at microwave frequencies. Transactions on Antennas and Propagation, 15(2), 278–286. https://doi.org/10.1109/TAP.1967.1138900.

    Article  Google Scholar 

  • Stogryn, A. P. (1972). The emissivity of sea foam at microwave frequencies. Journal of Geophysical Research, 77(9), 1658–1666. https://doi.org/10.1029/JC077i009p01658.

    Article  Google Scholar 

  • Sugihara, Y., Tsumori, H., Ohga, T., Yoshioka, H., & Serizawa, S. (2007). Variation of whitecap coverage with wave-field conditions. Journal of Marine Systems, 66, 47–60. https://doi.org/10.1016/j.jmarsys.2006.01.014.

    Article  Google Scholar 

  • Taylor, P., & Yelland, M. (2001). The dependence of sea surface roughness on the height and steepness of the waves. Journal of Physical Oceanography, 31, 572–590.

    Article  Google Scholar 

  • Tolman, H. L., Balasubramaniyan, B., Burroughs, L. D., Chalikov, D. V., Chao, Y. Y., Chen, H. S., & Gerald, V. M. (2002). Development and implementation of wind-generated ocean surface wave models at NCEP. Weather Forecasting, 17, 311–333. https://doi.org/10.1175/1520-0434(2002)017,0311:DAIOWG.2.0.CO;2.

    Article  Google Scholar 

  • WAMDI Group. (1988). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18, 1775–1810. https://doi.org/10.1175/1520-0485(1988)018,1775:TWMTGO.2.0.CO;2.

    Article  Google Scholar 

  • Wang, Q., Monahan, E., Asher, W., & Smith, P. (1995). Correlations of whitecap coverage and gas transfer velocity with microwave brightness temperature for plunging and spilling breaking waves. In B. Jähne & E. Monahan (Eds.), Air-water gas transfer (pp. 217–225). Hanau: AEON Verlag.

    Google Scholar 

  • Wentz, F. J. (1975). A two-scale scattering model for foam-free sea microwave brightness temperatures. Journal of Geophysical Research, 80(24), 3441–3446. https://doi.org/10.1029/JC080i024p03441.

    Article  Google Scholar 

  • Wentz, F. J. (1983). A model function for ocean microwave brightness temperatures. Journal of Geophysical Research, 88(C3), 1892–1908. https://doi.org/10.1029/JC088iC03p01892.

    Article  Google Scholar 

  • Wentz, F. J. (1997). A well-calibrated ocean algorithm for special sensor microwave/imager. Journal of Geophysical Research, 102(C4), 8703–8718. https://doi.org/10.1029/96JC01751.

    Article  Google Scholar 

  • Williams, G., Jr. (1969). Microwave radiometry of the ocean and the possibility of marine wind velocity determination from satellite observations. Journal of Geophysical Research, 18, 4591–4594.

    Article  Google Scholar 

  • WISE Group. (2007). Progress in Oceanography, 75, 603–674. https://doi.org/10.1016/j.pocean.2007.05.005.

    Article  Google Scholar 

  • Woolf, D. K. (2005). Parametrization of gas transfer velocities and sea-state-dependent wave breaking. Tellus, 57B, 87–94.

    Article  Google Scholar 

  • Wu, J. (1979). Oceanic whitecaps and sea state. Journal of Physical Oceanography, 9, 1064–1068.

    Article  Google Scholar 

  • Wu, J. (1988). Variations of whitecap coverage with wind stress and water temperature. Journal of Physical Oceanography, 18, 1448–1453.

    Article  Google Scholar 

  • Wu, J. (1992). Individual characteristics of whitecaps and volumetric description of bubbles. IEEE Transactions on Antennas and Propagation, 17, 150–158.

    Google Scholar 

  • Zhao, D., & Toba, Y. (2001). Dependence of whitecap coverage on wind and wind-wave properties. Journal of Oceanography, 57, 603–616.

    Article  Google Scholar 

Download references

Acknowledgments

I am deeply grateful to Peter W. Gaiser and Richard M. Bevilacqua for unwavering support in pursuing passive remote sensing of whitecaps at Remote Sensing Division, NRL. The significant contributions of Michael H. Bettenhausen and William F. Johnston in developing the WindSat forward model and producing the WindSat data is acknowledged and highly appreciated. Credit is due to W. Erick Rogers for his work on the wave modeling. This work was sponsored by the Office of Naval Research (NRL program element 61153 N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena D. Anguelova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anguelova, M.D. (2020). Global Whitecap Coverage from Satellite Remote Sensing and Wave Modelling. In: Vlahos, P., Monahan, E. (eds) Recent Advances in the Study of Oceanic Whitecaps. Springer, Cham. https://doi.org/10.1007/978-3-030-36371-0_11

Download citation

Publish with us

Policies and ethics