Skip to main content

Anatomy of Targets for Deep Brain Stimulation

  • Chapter
  • First Online:
Fundamentals and Clinics of Deep Brain Stimulation

Abstract

The purpose of Deep Brain Stimulation (DBS) is to modulate the activity of specific anatomical areas in the brain and thereby manage the symptoms of neurological and/or psychiatric disorders. Essential to this surgical management is an understanding of the anatomy and physiology of the target regions. The basal ganglia and the thalamus are the main target areas for DBS. These structures are connected to higher (cortical) and lower (brainstem) areas through both partially parallel and partly integrated projections. These projections are primarily responsible not only for motor control, but also for other functions such as motor learning, associative functions, and emotions. According to the classical basal ganglia model, information flows through the basal ganglia back to the cortex through two pathways, while new models show that parallel circuits subserve the classical functions of the basal ganglia engaging associative and limbic territories. The current targets of DBS for movement disorders are the dorsolateral part of the subthalamic nucleus, the posterior ventrolateral part of the internal globus pallidus, and the ventrolateral nuclei of the thalamus. For psychiatric disorders, relevant targets are the ventral striatum, including the nucleus accumbens, the ventral part of the internal capsule, the ventromedial part of the subthalamic nucleus, the anterior part of the internal globus pallidus, and the medial nuclei of the thalamus. The anterior nucleus of the thalamus is part of the Papez circuit and has been targeted in patients with treatment-resistant epilepsy. The anatomical details of these targets are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermans L, Duits A, van der Linden C, et al. Double-blind clinical trial of thalamic stimulation in patients with Tourette syndrome. Brain. 2011;134:32–844.

    Article  Google Scholar 

  • Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13:266–71.

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Grutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res. 1990;85:119–46.

    Article  CAS  PubMed  Google Scholar 

  • Anden NE, Dahlstrom A, Fuxe K, et al. Ascending noradrenaline neurons from the pons and the medulla oblongata. Experientia. 1966;22:44–5.

    Article  CAS  PubMed  Google Scholar 

  • Basar K, Sesia T, Groenewegen H, et al. Nucleus accumbens and impulsivity. Prog Neurobiol. 2010;92:533–57.

    Article  PubMed  Google Scholar 

  • Bejjani BP, Damier P, Arnulf I, et al. Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med. 1999;340:1476–80.

    Article  CAS  PubMed  Google Scholar 

  • Benabid AL, Pollak P, Seigneuret E, et al. Chronic VIM thalamic stimulation in Parkinson’s disease, essential tremor and extra-pyramidal dyskinesias. Acta Neurochir Suppl. 1993;58:39–44.

    CAS  PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ. Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol. 1990;299:187–228.

    Article  CAS  PubMed  Google Scholar 

  • Bewernick BH, Hurlemann R, Matusch A, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67:110–6.

    Article  PubMed  Google Scholar 

  • Bolam JP, Izzo PN, Graybiel AM. Cellular substrate of the histochemically defined striosome/matrix system of the caudate nucleus: a combined Golgi and immunocytochemical study in cat and ferret. Neuroscience. 1988;24:853–75.

    Article  CAS  PubMed  Google Scholar 

  • Castle M, Aymerich MS, Sanchez-Escobar C, et al. Thalamic innervation of the direct and indirect basal ganglia pathways in the rat: ipsi- and contralateral projections. J Comp Neurol. 2005;483:143–53.

    Article  PubMed  Google Scholar 

  • Dahlstrom A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia. 1964;20:398–9.

    Article  CAS  PubMed  Google Scholar 

  • Denys D, Mantione M, Figee M, et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry. 2010;6:1061–8.

    Article  Google Scholar 

  • Desban M, Gauchy C, Glowinsk J, Kemel ML. Heterogeneous topographical distribution of the striatonigral and striatopallidal neurons in the matrix compartment of the cat caudate nucleus. J Comp Neurol. 1995;352:117–33.

    Article  CAS  PubMed  Google Scholar 

  • Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355:896–908.

    Article  CAS  PubMed  Google Scholar 

  • Donoghue JP, Herkenham M. Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat. Brain Res. 1986;365:397–403.

    Article  CAS  PubMed  Google Scholar 

  • Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51:899–908.

    Article  PubMed  Google Scholar 

  • Fudge JL, Haber SN. Defining the caudal ventral striatum in primates: cellular and histochemical features. J Neurosci. 2002;22:10078–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiyama F, Sohn J, Nakano T, et al. Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci. 2011;33:668–77.

    Article  PubMed  Google Scholar 

  • Gerfen CR. The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature. 1984;311:461–4.

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 1992;15:133–9.

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Amaya JM, Graybiel AM. Compartmental origins of the striatopallidal projection in the primate. Neuroscience. 1990;34:111–26.

    Article  CAS  PubMed  Google Scholar 

  • Gradinaru V, Mogri M, Thompson KR, et al. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324:354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM. Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience. 1984;13:1157–87.

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr. Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A. 1978;75:5723–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM, Ragsdale CWJ, Yoneoka ES, Elde RP. An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining. Neuroscience. 1981;6:377–97.

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Adler A, Bergman H. Basal ganglia. Cambridge: Academic Press; 2011.

    Google Scholar 

  • Hameleers R, Temel Y, Visser-Vandewalle V. History of the corpus Luysii: 1865-1995. Arch Neurol. 2006;63:1340–2.

    Article  PubMed  Google Scholar 

  • Heimer L, Wilson R. The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M, editor. Persepectives in neurobiology, Golgi centennial symposium. New York: Raven Press; 1975. p. 177–93.

    Google Scholar 

  • Hescham S, Lim LW, Jahanshahi A, et al. Deep brain stimulation in dementia-related disorders. Neurosci Biobehav Rev. 2013;37:2666–75.

    Article  PubMed  Google Scholar 

  • Hubble JP, Busenbark KL, Wilkinson S, et al. Deep brain stimulation for essential tremor. Neurology. 1996;46:1150–3.

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER. The neurobiology of behavior. In: Kandel ER, Schwartz JH, Jessel TM, editors. Principles of neural science. New York: McGraw-Hill; 2000. p. 1–36.

    Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson PC. Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J Neurophysiol. 1989;62:1052–68.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson PC. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci. 1990;10:3421–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 1995;18:527–35.

    Article  CAS  PubMed  Google Scholar 

  • Kincaid AE, Wilson CJ. Corticostriatal innervation of the patch and matrix in the rat neostriatum. J Comp Neurol. 1996;374:578–92.

    Article  CAS  PubMed  Google Scholar 

  • Kocabicak E, Temel Y. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: surgical technique, tips, tricks and complications. Clin Neurol Neurosurg. 2013;115:2318–23.

    Article  PubMed  Google Scholar 

  • Krauss JK, Pohle T, Weber S, et al. Bilateral stimulation of globus pallidus internus for treatment of cervical dystonia. Lancet. 1999;354:837–8.

    Article  CAS  PubMed  Google Scholar 

  • Laitinen LV, Bergenheim AT, Hariz MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg. 1992;76:53–61.

    Article  CAS  PubMed  Google Scholar 

  • Lambert C, Zrinzo L, Nagy Z, et al. Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage. 2012;60:83–94.

    Article  PubMed  Google Scholar 

  • Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med. 2012;2:a009621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei W, Jiao Y, Del Mar N, Reiner A. Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci. 2004;24:8289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano AM, Giacobbe P, Hamani C, et al. A multicenter pilot study of subcallosal cingulate area deep brain stimulation for treatment-resistant depression. J Neurosurg. 2012;116:315–22.

    Article  PubMed  Google Scholar 

  • Luyten L, Hendrickx S, Raymaekers S, et al. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder. Mol Psychiatry. 2016;21:1272–80.

    Article  CAS  PubMed  Google Scholar 

  • Mallet L, Polosan M, Jaafari N, et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med. 2008;359:2121–34.

    Article  CAS  PubMed  Google Scholar 

  • McFarland NR, Haber SN. Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque. J Comp Neurol. 2001;429:321–36.

    Article  CAS  PubMed  Google Scholar 

  • Moers-Hornikx VM, Sesia T, Basar K, et al. Cerebellar nuclei are involved in impulsive behaviour. Behav Brain Res. 2009;203:256–63.

    Article  CAS  PubMed  Google Scholar 

  • Nakano K. Neural circuits and topographic organization of the basal ganglia and related regions. Brain Dev. 2000;22(Suppl 1):S5–16.

    Article  PubMed  Google Scholar 

  • Nambu A, Takada M, Inase M, Tokuno H. Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci. 1996;16:2671–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci Res. 2002;43:111–7.

    Article  PubMed  Google Scholar 

  • Nauta HJ. A proposed conceptual reorganization of the basal ganglia and telencephalon. Neuroscience. 1979;4:1875–81.

    Article  CAS  PubMed  Google Scholar 

  • Nuttin B, Cosyns P, Demeulemeester H, et al. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet. 1999;354:1526.

    Article  CAS  PubMed  Google Scholar 

  • Ohye C. Thalamus. In: Paxinos G, editor. The human nervous system. San Diego: Academic Press; 1990. p. 439–82.

    Chapter  Google Scholar 

  • Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev. 1995;20:91–127.

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Sato F, Wu Y, et al. Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci. 2000;23:S20–7.

    Article  CAS  PubMed  Google Scholar 

  • Penny GR, Wilson CJ, Kitai ST. Relationship of the axonal and dendritic geometry of spiny projection neurons to the compartmental organization of the neostriatum. J Comp Neurol. 1988;269:275–89.

    Article  CAS  PubMed  Google Scholar 

  • Pert CB, Kuhar MJ, Snyder SH. Opiate receptor: autoradiographic localization in rat brain. Proc Natl Acad Sci U S A. 1976;73:3729–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plantinga BR, Temel Y, Roebroeck A, et al. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures. Front Hum Neurosci. 2014;8:876.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragsdale CW Jr, Graybiel AM. Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat. J Comp Neurol. 1988;269:506–22.

    Article  PubMed  Google Scholar 

  • Rosin DL, Robeva A, Woodard RL, et al. Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol. 1998;401:163–86.

    Article  CAS  PubMed  Google Scholar 

  • Sadikot AF, Parent A, Francois C. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol. 1992a;315:137–59.

    Article  CAS  PubMed  Google Scholar 

  • Sadikot AF, Parent A, Smith Y, Bolam JP. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J Comp Neurol. 1992b;320:228–42.

    Article  CAS  PubMed  Google Scholar 

  • Salgado S, Kaplitt MG. The nucleus accumbens: a comprehensive review. Stereotact Funct Neurosurg. 2015;93:75–93.

    Article  PubMed  Google Scholar 

  • Schlaepfer TE, Bewernick BH, Kayser S, et al. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry. 2013;73:1204–12.

    Article  PubMed  Google Scholar 

  • Shink E, Bevan MD, Bolam JP, Smith Y. The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience. 1996;73:335–57.

    Article  CAS  PubMed  Google Scholar 

  • Siegfried J, Lippitz B. Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurgery. 1994;35:1126–9.

    Article  CAS  PubMed  Google Scholar 

  • Smeets AJM, Duits AA, Plantinga BR, et al. Deep brain stimulation of the internal globus pallidus in refractory Tourette syndrome. Clin Neurol Neurosurg. 2016;142:54–9.

    Article  CAS  PubMed  Google Scholar 

  • Temel Y, Blokland A, Steinbusch HW, Visser-Vandewalle V. The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol. 2005;76:393–413.

    Article  CAS  PubMed  Google Scholar 

  • Temel Y, PLantinga B, Kuijf ML. Anatomie van de gebruikte targets bij diepe hersenstimulatie. In: Temel Y, Leentjens AFG, de Bie RMA, editors. Handboek diepe hersenstimulatie bij neurologische en psyciatrische aandoeningen. Houten: Bohn Stafleu van Loghum; 2016. p. 11–7.

    Chapter  Google Scholar 

  • Van Der Kooy D, Hattori T. Single subthalamic nucleus neurons project to both the globus pallidus and substantia nigra in rat. J Comp Neurol. 1980;192:751–68.

    Article  Google Scholar 

  • Vidailhet M, Jutras MF, Grabli D, Roze E. Deep brain stimulation for dystonia. J Neurol Neurosurg Psychiatry. 2013;84:1029–42.

    Article  PubMed  Google Scholar 

  • Weiss D, Walach M, Meisner C, et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain. 2013;136:2098–108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wichmann T, Kliem MA, Soares J. Slow oscillatory discharge in the primate basal ganglia. J Neurophysiol. 2002;87:1145–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jahanshahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jahanshahi, A., Mai, J.K., Temel, Y. (2020). Anatomy of Targets for Deep Brain Stimulation. In: Temel, Y., Leentjens, A., de Bie, R., Chabardes, S., Fasano, A. (eds) Fundamentals and Clinics of Deep Brain Stimulation. Springer, Cham. https://doi.org/10.1007/978-3-030-36346-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36346-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36345-1

  • Online ISBN: 978-3-030-36346-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics