Skip to main content

Coronary Stents and Metal Allergy

  • Reference work entry
  • First Online:
Contact Dermatitis

Abstract

The evolution of minimally invasive endovascular technology, with PCI and stenting, has revolutionized patient care, leading to reduction in age-related cardiovascular deaths the last 25–30 years. Cardiovascular stents are made of different material and have different design. A complication to the intervention and especially to bare metal stents is in-stent restenosis. Neointimal proliferation and inflammation leading to restenosis have several causes, briefly discussed below. The use of foreign material in close association with/in the human body does as such implicate the possibility of a contact allergy and possible clinical symptoms, but often the association is difficult to prove, especially if the symptoms are not primarily engaging the skin. A possible association between stents and metal allergy has been investigated. With regard to stents, the studies that have been performed in this field are mainly retrospective studies, which is of course in itself a limitation, and show somewhat disparate results. Since the chapter will have focus on findings having been made and furthermore provide knowledge etc of stents as such and as to what happens during PCI and, finally, some practical advice on how to investigate, and when to investigate, a patient where the question of contact allergy to stent material is raised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonfield CM, Kumar AR, Gerszten PC (2014) The history of military cranioplasty. Neurosurg Focus 36:E18

    Article  PubMed  Google Scholar 

  2. Pacheco KA (2018) Allergy to surgical implants. Clin Rev Allergy Immunol 56:1–14. https://doi.org/10.1007/s12016-018-8707-y

    Article  Google Scholar 

  3. Gimenez-Arnau A, Riambau V, Serra-Baldrich E et al (2000) Metal-induced generalized pruriginous dermatitis and endovascular surgery. Contact Dermatitis 43:35–40

    Article  CAS  PubMed  Google Scholar 

  4. Guerra A, Kirkwood M (2017) Severe generalized dermatitis in a nickel-allergic patient with a popliteal artery nitinol stent. J Vasc Surg Cases Innov Tech 3:23–25

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rigatelli G, Cardaioli P, Giordan M et al (2007) Nickel allergy in interatrial shunt device-based closure patients. Congenit Heart Dis 2:416–420

    Article  PubMed  Google Scholar 

  6. Citerne O, Gomes S, Scanu P et al (2011) Painful eczema mimicking pocket infection in a patient with an ICD: a rare cause of skin allergy to nickel/cobalt alloy. Circulation 123:1241–1242

    Article  PubMed  Google Scholar 

  7. Andrews ID, Scheinman P (2011) Systemic hypersensitivity reaction (without cutaneous manifestations) to an implantable cardioverter-defibrillator. Dermatitis 22:161–164

    Article  PubMed  Google Scholar 

  8. Mori H, Kutys R, Romero M, Virmani R, Finn AV (2017) Metallic coronary stents: is there a relationship between stent fracture and hypersensitivity? JACC Cardiovasc Interv 10:1175–1177

    Article  PubMed  Google Scholar 

  9. Nakajima Y, Itoh T, Morino Y (2016) Metal allergy to everolimus-eluting cobalt chromium stents confirmed by positive skin testing as a cause of recurrent multivessel in-stent restenosis. Catheter Cardiovasc Interv 87:E137–E142

    Article  PubMed  Google Scholar 

  10. Svedman C, Dunér K, Kehler M et al (2006) Lichenoid reactions to gold from dental restorations and exposure to gold through intracoronary implant of a gold-plated stent. Clin Res Cardiol 95:689–691

    Article  CAS  PubMed  Google Scholar 

  11. Fuster V, Mearns B (2009) The CVD paradox: mortality vs prevalence. Nat Rev Cardiol 96:669

    Article  Google Scholar 

  12. Jorge C, Dubois C (2015) Clinical utility of platinum chromium bare-metal stents in coronary heart disease. Med Devices (Auckl) 8:359–367

    CAS  Google Scholar 

  13. Grüntzig A (1978) Transluminal dilatation of coronary-artery stenosis. Lancet 1:263

    Article  PubMed  Google Scholar 

  14. Serruys PW, de Jaegere P, Kiemeneij F et al (1994) A comparison of balloon-expandable-stent-implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 331:489–495

    Article  CAS  PubMed  Google Scholar 

  15. Sugwart U, Puel J, Mirkovitch V et al (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316:701–706

    Article  Google Scholar 

  16. Yousuf O, Bhatt DL (2011) The evolution of antiplatelet therapy in cardiovascular disease. Nat Rev Cardiol 8:547–559

    Article  CAS  PubMed  Google Scholar 

  17. Bauters C, Meurice T, Hamon M et al (1996) Mechanisms and prevention of restenosis: from experimental models to clinical practice. Cardiovasc Res 31:835–846

    Article  CAS  PubMed  Google Scholar 

  18. Serruys PW, Unger F, Sousa JE et al (2001) Comparison of coronary artery bypass surgery and stenting for the treatment of multivessel disease. N Engl J Med 344:1117–1124

    Article  CAS  Google Scholar 

  19. Lindholm D, Curr JS (2016) Bioresorbable stents in PCI. Curr Cardiol Rep 18:74

    Article  PubMed  Google Scholar 

  20. Stettler C, Wandel S, Allemann S et al (2007) Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370:937–948

    Article  CAS  PubMed  Google Scholar 

  21. Simard T, Hibbert B, Ramirez FD et al (2014) The evolution of coronary stents: a brief review. Can J Cardiol 30:35–45

    Article  PubMed  Google Scholar 

  22. Sarno G, Lagerqvist B, Nilsson J et al (2014) Stent thrombosis in new-generation drug-eluting stents in patients with STEMI undergoing primary PCI: a report from SCAAR. J Am Coll Cardiol 64:16–24

    Article  PubMed  Google Scholar 

  23. Byrne RA, Colleran R, Kastrati A (2018) Strengths and limitations of real world data in patients treated with coronary stents. Circ Cardiovasc Interv 9:e007239. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007239

    Article  Google Scholar 

  24. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, Jüni P, Kastrati A, Koller A, Kristensen SD, Niebauer J, Richter DJ, Seferovic PM, Sibbing D, Stefanini GG, Windecker S, Yadav R, Zembala MO (2018) ESC Scientific Document Group. ESC/EACTS Guidelines on myocardial revascularization [published online August 25, 2018]. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy394. https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehy394/5079120

  25. Taniwaki M, Rau MD, Zaugg D et al (2016) Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography. Circulation 133:650–660

    Article  CAS  PubMed  Google Scholar 

  26. Cook S, Wenaweser P, Togni M et al (2007) Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation 115:2426–2434

    Article  CAS  PubMed  Google Scholar 

  27. Joner M, Finn AV, Farb A et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 4881:193–202

    Article  Google Scholar 

  28. Otsuka F, Vorphal M, Nakano M et al (2014) Pathology of second-generation everolimus-eluting stents versus first generation sirolimus-and paclitaxel-eluting stents in humans. Circulation 129:211–223

    Article  CAS  PubMed  Google Scholar 

  29. Indolfi C, De Rosa S, Colombo A (2016) Bioresorbable vascular scaffolds – basic concepts and clinical outcome. Nat Rev Cardiol 13:719–729

    Article  CAS  PubMed  Google Scholar 

  30. Rizik DG, Hermiller JB, Kereiakes DJ (2016) Bioresorbable vascular scaffolds for the treatment of coronary artery disease: clinical outcomes from randomized controlled trials. Catheter Cardiovasc Interv S1:21–30. https://doi.org/10.1002/ccd.26810

    Article  Google Scholar 

  31. Joner M, Koppara T, Virmani R et al (2016) Improving vessel healing with fully bioresorbable drug-eluting stents: more than a pipe dream. Eur Heart J 37:241–244

    Article  PubMed  Google Scholar 

  32. Iqbal J, Onuma Y, Ormiston J et al (2014) Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J 35:765–776

    Article  PubMed  Google Scholar 

  33. Rapetto C, Leoncini M (2017) Review Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives. J Thorac Dis 9(Suppl 9):S903–S913

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sakamoto A, Jinnouchi H, Torii S, Virmani R, Finn AV (2018) Understanding the impact of stent and scaffold material and strut design on coronary artery thrombosis from the basic and clinical points of view. Bioengineering (Basel) 5(3):pii: E71. https://doi.org/10.3390/bioengineering5030071

    Article  CAS  Google Scholar 

  35. Onuma Y, Serruys PW (2011) Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 123:779–797

    Article  PubMed  Google Scholar 

  36. Indolfi C, De Rosa S, Colombo A (2016) Bioresorbable vascular scaffolds – basic concepts and clinical outcome. Lancet 387:537–544

    Google Scholar 

  37. Cassese S, Byrne RA, Ndrepepa G et al (2016) Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet 6(387):537–544

    Article  CAS  Google Scholar 

  38. Felix CM, van den Berg VJ, Hoeks SE et al (2018) Mid-term outcomes of the absorb BVS versus second-generation DES: a systematic review and meta-analysis. PLoS One 13:e0197119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sanchez OD, Yahagi K, Byrne RA et al (2015) Pathological aspects of bioresorbable stent implantation. EuroIntervention 11(Suppl V):V159–V165

    Article  PubMed  Google Scholar 

  40. Schild HH, Strunk H (1997) Biological effects of metallic stents. In: Adam A, Dondelinger R, Mueller P (eds) Textbook of metallic stents. ISIS, Medical Media, Oxford

    Google Scholar 

  41. Rousseau H, Puel J, Joffre F et al (1987) Self expanding endovascular prosthesis: an experimental study. Radiology 164:709–714

    Article  CAS  PubMed  Google Scholar 

  42. Chaabane C, Otsuka F, Virmani R et al (2013) Biological responses in stented arteries. Cardiovasc Res 15(99):353–363

    Article  CAS  Google Scholar 

  43. Consigny PM, Tulenko TN, Nicosia RF (1986) Immediate and long term effects of angioplasty on normal rabbit iliac artery. Arteriosclerosis 6:265–276

    Article  CAS  PubMed  Google Scholar 

  44. Lindner V, Lappi D, Baird A et al (1991) Role of basic fibroblast growth factor in vascular lesion formation. Circ Res 68:106–113

    Article  CAS  PubMed  Google Scholar 

  45. Palmaz FC, Tio FO, Schatz RA et al (1998) Early endothelialization of balloon expandable stents: experimental observations. J Intervent Radiol 3:119–124

    Google Scholar 

  46. Palmaz FC, Windeler SA, Garcia F et al (1986) Artheriosclerotic rabbit aortas: expandable intraluminal grafting. Radiology 160:723–726

    Article  CAS  PubMed  Google Scholar 

  47. Van der Heiden K, Gijsen FJ, Narracott A et al (2013) The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc Res 99:269–275

    Article  PubMed  CAS  Google Scholar 

  48. Maass D, Demiere D, Deaton D et al (1983) Transluminal implantation of self-adjustable expanding prosthesis: principles, techniques and results. Prog Artif Organs 2:979

    Google Scholar 

  49. Beyar R, Shofti R, Grenedier F et al (1993) Coronary arterial histological response to the self expandable nitinol stent. J Am Coll Cardiol 21:336A

    Google Scholar 

  50. Beyar R, Shofti R, Grenedier F et al (1994) Self expandable nitinol stent for cardiovascular applications: canine and human experience. Catheter Cardiovasc Diagn 3:162–170

    Article  Google Scholar 

  51. Schwartz SM, Campbell GR, Campbell JH (1986) Replication of smooth muscle cells in vascular disease. Circ Res 58:427

    Article  CAS  PubMed  Google Scholar 

  52. Farb A, Kolodgie FD, Hwang JY et al (2004) Extracellular matrix changes in stented human coronary arteries. Circulation 110:940–947

    Article  CAS  PubMed  Google Scholar 

  53. Curcio A, Torella D, Indolfi C (2011) Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J 75:1287–1296

    Article  CAS  PubMed  Google Scholar 

  54. Mennuni MG, Pagnotta PA, Stefanini GG (2016) Coronary stents: the impact of technological advances on clinical outcomes. Ann Biomed Eng 44:488–496

    Article  PubMed  Google Scholar 

  55. Sousa JE, Costa MA, Abizaid AC et al (2001) Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation 104:2007–2011

    Article  CAS  PubMed  Google Scholar 

  56. Stone GW, Ellis SG, Cox DA, TAXUS-IV Investigators et al (2004) A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350:221–231

    Article  CAS  PubMed  Google Scholar 

  57. Granada JF, Inami S, Aboodi MS et al (2010) Development of a novel prohealing stent designed to deliver sirolimus from a biodegradable abluminal matrix. Circ Cardiovasc Interv 3:257–266

    Article  CAS  PubMed  Google Scholar 

  58. Iannaccone M, D’Ascenzo F, Templin C et al (2017) Optical coherence tomography evaluation of intermediate-term healing of different stent types: systemic review and meta-analysis. Eur Heart J Cardiovasc Imaging 18:159–166

    Article  PubMed  Google Scholar 

  59. Whittaker DR, Fillinger MF (2006) The engineering of endovascular stent technology: a review. Vasc Endovasc Surg 40:85–94

    Article  Google Scholar 

  60. Foin N, Lee RD, Torii R et al (2014) Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol 177:800–808

    Article  PubMed  Google Scholar 

  61. Honorari G, Ellis SG, Wilkoff BL et al (2008) Hypersensitivity reactions associated with endovascular devices. Contact Dermatitis 59:7–22

    Article  Google Scholar 

  62. O’Brien BJ, Stinson JS, Larsen SR, Eppihimer MJ, Carroll WM (2010) A platinum-chromium steel for cardiovascular stents. Biomaterials 31:3755–3761

    Article  PubMed  CAS  Google Scholar 

  63. Gotman I (1997) Characteristics of metals used in implants. J Endourol 11:383–389

    Article  CAS  PubMed  Google Scholar 

  64. Stefanini GG, Holmes DR (2013) Drug eluting coronary-artery stents. N Engl J Med 368:254–265

    Article  CAS  PubMed  Google Scholar 

  65. Canfield J, Totary-Jain H (2018) 40 years of percutaneous coronary intervention: history and future directions. J Pers Med 1:8. pii: E33. https://doi.org/10.3390/jpm8040033

    Article  Google Scholar 

  66. Lee DH, de la Torre Hernandez JM (2018) The newest generation of drug-eluting stents and beyond. Eur Cardiol 13:54–59

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Bourantas CV, Farooq V et al (2016) Bioresorbable scaffolds in the treatment of coronary artery disease. BMC Cardiovasc Disord 16:38. https://doi.org/10.1186/s12872-016-0207-5

    Article  CAS  Google Scholar 

  68. Picard F, Pighi M, de Hemptinne Q, et al (2018) Comparison of the biodegradable polymer everolimus-eluting stent with contemporary drug-eluting stents: a systematic review and meta-analysis. Int J Cardiol. pii: S0167-5273(18)31913-2

    Google Scholar 

  69. Byrne RA, Alfonso F, Schneider S et al (2018) Prospective, randomized trial of bioresorbable scaffolds vs. everolimus-eluting stents in patients undergoing coronary stenting for myocardial infarction: the Intracoronary Scaffold Assessment a Randomized evaluation of Absorb in Myocardial Infarction (ISAR-Absorb MI) trial. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy710. [Epub ahead of print]

  70. Guagliumi G, Capodanno D (2018) Drug-eluting stents are not alike – does it matter? Eur Heart J Qual Care Clin Outcomes. https://doi.org/10.1093/ehjqcco/qcy052. [Epub ahead of print]

  71. World Health Organization. International programme on chemical safety, immunotoxicity, Harmonization Project Document No 10. Guidance for immunotoxicity Risk Assessments for Chemicals. This project was conducted within the WHO/International Programme on Chemical Safety project on the Harmonization of Approaches to the Assessment of Risk from Exposure to Chemicals, WHO Library Cataloguing-in-Publication Data ISBN 978 92 4 150330 3 Printed by the WHO Document Production Services, Geneva, Switzerland 2011. Available from: http://www.who.int/ipcs/methods/harmonization/areas/immunotoxicity/en/. Accessed 2018-12-11

  72. Fischer A, Wieneke H, Brauer H et al (2001) Metallic biomaterials for coronary stents. Z Kardiol 90:251–262

    Article  CAS  PubMed  Google Scholar 

  73. Halwani DO, Anderson PG, Lemons JE et al (2011) In-vivo corrosion and local release of metallic ions from vascular stents into surrounding tissue. J Invasive Cardiol 22:528–535

    Google Scholar 

  74. Svedman C, Möller H, Gruvberger B et al (2014) Implants and contact allergy: are sensitizing metals released as haptens from coronary stents? Contact Dermatitis 71:92–97

    Article  PubMed  Google Scholar 

  75. Schmalz GP. Garhammer P, Reitinger T (1999) Metal content of biopsies from neighborhood of casting alloys. J Dent Res 7, abstract No 1048, 236

    Google Scholar 

  76. Dimic ID, Cvijovic-Alagic IL, Kostic IT et al (2014) Metallic ion release from biocompatible cobalt-based alloy. Chem Ind Chem Eng Q 20:571–577

    Article  CAS  Google Scholar 

  77. Scmidt M, Raghavan B, Muller V et al (2010) Crucial role for human toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol 11:814–819

    Article  CAS  Google Scholar 

  78. Raghavan B, Martin SF, Esser PR et al (2012) Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Rep 13:1109–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rachmawati D (2016) Innate immune reactivity to dental alloys, thesis. Vrije Universiteit, Amsterdam

    Google Scholar 

  80. Gong Z, Li M, Guo X et al (2013) Stent implantation in patients with metal allergy: a systemic review and meta-analysis. Coron Artery Dis 24:684–689

    Article  PubMed  Google Scholar 

  81. Koster R, Vieluf D, Kiehn M et al (2000) Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet 356:1895–1897

    Article  CAS  PubMed  Google Scholar 

  82. Hillen U, Haude M, Erbel R et al (2002) Evaluation of metal allergies in patients with coronary stents. Contact Dermatitis 47:353–356

    Article  CAS  PubMed  Google Scholar 

  83. Iijima R, Iakri Y, Amiya E, Tanimoto S, Nakazawa G et al (2005) The impact of metallic allergy on stent implantation: metal allergy and recurrence of in-stent restenosis. Int J Cardiol 104:319–325

    Article  PubMed  Google Scholar 

  84. Norgaz T, Hobioglu G, Serdar ZA et al (2005) Is there a link between nickel allergy and coronary stent restenosis? Tohoku J Exp Med 206:243–246

    Article  CAS  PubMed  Google Scholar 

  85. Saito T, Hokimoto S, Oshima S et al (2009) Metal allergic reaction in chronic refractory in-stent restenosis. Cardiovasc Revasc Med 10:17–22

    Article  PubMed  Google Scholar 

  86. Svedman C, Ekqvist S, Möller H et al (2009) A correlation found between contact allergy to stent material and restenosis of the coronary arteries. Contact Dermatitis 60:158–164

    Article  PubMed  Google Scholar 

  87. El-Mawardy R, Fuad H, Abdel-Salam Z et al (2011) Does nickel allergy play a role in the development of in-stent restenosis? Eur Rev Med Pharmacol Sci 15:1235–1240

    CAS  PubMed  Google Scholar 

  88. Thyssen JP, Engkilde K, Menné et al (2011) No association between metal allergy and cardiac in-stent restenosis in patients with dermatitis-results from a linkage study. Contact Dermatitis 64:138–141

    Article  PubMed  Google Scholar 

  89. Aliağaoğlu C, Turan H, Erden I et al (2012) Relation of nickel allergy with in-stent restenosis in patients treated with cobalt chromium stents. Ann Dermatol 24:426–429

    Article  PubMed  PubMed Central  Google Scholar 

  90. Slodownik D, Danenberg C, Merkin D et al (2018) Coronary stent restenosis and the association with allergy to metal content of 316L stainless steel. Cardiovasc J Afr 29:43–45

    Article  CAS  PubMed  Google Scholar 

  91. Ekqvist S, Svedman C, Möller H et al (2007) High frequency of contact allergy to gold in patients with endovascular coronary stents. Br J Dermatol 157:730–738

    Article  CAS  PubMed  Google Scholar 

  92. Ekqvist S, Svedman C, Lundh T et al (2008) A correlation found between gold concentration in blood and patch test reactions in patients with coronary stents. Contact Dermatitis 59:137–142

    Article  CAS  PubMed  Google Scholar 

  93. Nakazawa G, Tanabe K, Aoki J (2008) Sirolimus-eluting stents suppress neointimal formation irrespective of metallic allergy. Circ J 72:893–896

    Article  CAS  PubMed  Google Scholar 

  94. Shokri M, Bagheri B, Garjani A (2015) Everolimus-eluting stents reduce monocyte expression of toll-like receptor 4. Adv Pharm Bull 5:643–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Daemen J, Wenaweser P, Tsuchida K et al (2007) Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369:667–678

    Article  CAS  PubMed  Google Scholar 

  96. Wenaweser P, Daemen J, Zwahlen M et al (2008) Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol 52:1134–1140

    Article  CAS  PubMed  Google Scholar 

  97. Chatterjee S, Pandey (2008) Drug eluting stents: friend or foe? A review of cellular mechanisms behind the effects of paclitaxel and sirolimus eluting stents. Curr Drug Metab 9:554–566

    Article  CAS  PubMed  Google Scholar 

  98. Virmani R, Guagliumi G, Farb A et al (2004) Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109:701–705

    Article  PubMed  Google Scholar 

  99. Nebeker JR, Virmani R, Bennett CL et al (2006) Hypersensitivity cases associated with drug eluting coronary stents. JACC 47:175–181

    Article  PubMed  Google Scholar 

  100. Yamaji K, Kubo S, Inoue K et al (2014) Association of localized hypersensitivity and in-stent neoatherosclerosis with the very late drug-eluting stent thrombosis. PLoS One 9:e113870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Cook S, Ladich E, Nakazawa G et al (2009) Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation 120:391–399

    Article  PubMed  Google Scholar 

  102. Kounis NG (2016) Kounis syndrome: an update on epidemiology, pathogenesis, diagnosis and therapeutic management. Clin Chem Lab Med 54:1545–1559

    Article  CAS  PubMed  Google Scholar 

  103. Fassio F, Losappio L, Antolin-Amerigo D et al (2016) Kounis syndrome: a concise review with focus on management. Eur J Intern Med 30:7–10

    Article  CAS  PubMed  Google Scholar 

  104. Akinapelli A, Chen JP, Roy K et al (2017) Current state of bioabsorbable polymer-coated drug-eluting stents. Curr Cardiol Rev 13:139–154

    PubMed  PubMed Central  Google Scholar 

  105. Van der Giessen WJ, Lincoff AM, Schwartz RS et al (1996) Marked inflammatory sequelae to implantation of biodegradable and non biodegradable polymers in porcine coronary arteries. Circulation 94:1690–1697

    Article  PubMed  Google Scholar 

  106. Tenekecioglu E, Farooq V, Bourantas CV et al (2016) Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord 16:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Otsuka F, Yahagi K, Ladich E et al (2015) Hypersensitivity reaction in the US Food and Drug Administration-approved second-generation drug-eluting stents: histopathological assessment with ex vivo optical coherence tomography. Circulation 13:322–324

    Article  Google Scholar 

  108. Nikam N, Steinberg TB, Steinberg DH (2015) Advances in stent technologies and their effect on clinical efficacy and safety. J Allergy Clin Immunol Pract 3:683–695

    Google Scholar 

  109. Canfield J, Totary-Jain H (2018) 40 years of percutaneous coronary intervention: history and future directions. J Pers Med 8. pii: E33. https://doi.org/10.3390/jpm8040033

  110. Muramatsu T, Onuma Y, Zhang YJ et al (2013) Progress in treatment by percutaneous coronary intervention: the stent of the future. Rev Esp Cardiol (Engl Ed) 66:483–496

    Article  Google Scholar 

  111. Kalra A, Rehman H, Khera S et al (2017) New-generation coronary stents: current data and future directions. Curr Atheroscler Rep 19:14

    Article  PubMed  Google Scholar 

  112. Thyssen JP, Menné T, Schalock PC et al (2011) Pragmatic approach to the clinical work-up of patients with putative allergic disease to metallic orthopedic implants before and after surgery. Br J Dermatol 164:473–478

    CAS  PubMed  Google Scholar 

  113. Schalock PC, Menné T, Johansen JD (2012) Hypersensitivity reactions to metallic implants-diagnostic algorithm and suggested patch test series for clinical use. Contact Dermatitis 66:4–19

    Article  CAS  PubMed  Google Scholar 

  114. Liden C, Bruze M (2016) Kontaktallergi mot ortopediska metallimplantat är svårbedömd. Lakartidningen 113:D6L9

    PubMed  Google Scholar 

  115. Rosner GA, Fonacier LS (2017) Hypersensitivity to biomedical implants: prevention and diagnosis. Allergy Asthma Proc 38:177–183

    Article  CAS  PubMed  Google Scholar 

  116. Kieffer M (1979) Nickel sensitivity: relationship between history and patch test reaction. Contact Dermatitis 5:398–401

    Article  CAS  PubMed  Google Scholar 

  117. Ahnlide I, Ahlgren C, Björkner B et al (2002) Gold concentration in blood in relation to the number of gold restorations and contact allergy to gold. Acta Odontol Scand 60:301–305

    Article  CAS  PubMed  Google Scholar 

  118. Ekqvist S, Lundh T, Svedman C et al (2009) Does gold concentration in blood influence the result of patch testing to gold? Br J Dermatol 160:1016–1021

    Article  CAS  PubMed  Google Scholar 

  119. Lai DW, Saver JL, Araujo JA et al (2005) Pericarditis associated with nickel hypersensitivity to Amplatzer occluder device: a case report. Catheter Cardiovasc Interv 66:424–426

    Article  PubMed  Google Scholar 

  120. Johansen JD, Aalto-Korte K, Agner T et al (2015) European Society of Contact Dermatitis guideline for diagnostic patch testing – recommendations on best practice. Contact Dermatitis 73:195–221

    Article  PubMed  Google Scholar 

  121. Fall S, Bruze M, Isaksson M et al (2015) Contact allergy trends in Sweden – a retrospective comparison of patch test data from 1992, 2000, and 2009. Contact Dermatitis 72:297–304

    Article  CAS  PubMed  Google Scholar 

  122. Thyssen JP, Linneberg A, Menné T et al (2009) Contact allergy to allergens of the TRUE-test (panels 1 and 2) has decreased modestly in the general population. Br J Dermatol 161:1124–1129

    Article  CAS  PubMed  Google Scholar 

  123. Fischer LA, Johansen JD, Menné T (2007) Nickel allergy: relationship between patch test and repeated open application test thresholds. Br J Dermatol 157:723–729

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Svedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Svedman, C., Bruze, M. (2021). Coronary Stents and Metal Allergy. In: Johansen, J.D., Mahler, V., Lepoittevin, JP., Frosch, P.J. (eds) Contact Dermatitis. Springer, Cham. https://doi.org/10.1007/978-3-030-36335-2_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36335-2_81

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36334-5

  • Online ISBN: 978-3-030-36335-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics