Skip to main content

Immunodetection and Pathogenesis Mediated by Bacterial Membrane Vesicles

  • Chapter
  • First Online:
Bacterial Membrane Vesicles

Abstract

Animals have evolved sophisticated means to detect and defend themselves against colonization by microorganisms. Mammals differentiate self from nonself by the use of germline encoded pattern recognition receptors (PRRs) of the innate immune system in addition to pathogen-specific recognition by the adaptive immune system. Conserved microbial structures, termed microbe-associated molecular patterns (MAMPs) are recognized by the innate immune system. Pathogens succeed in subverting these immune mechanisms by the production of effector proteins and modification of MAMPs. While many PRRs and their cognate ligands have been extensively examined, most studies addressed the immune response toward the whole microorganism, isolated MAMPs, or effector proteins. Both Gram-negative and Gram-positive bacteria produce membrane vesicles that contain several MAMPs and bacterial effector proteins, and the study of the interplay of these with immune PRRs is a recently emerging field. Here we summarize key components of the innate and adaptive immune systems and discuss current knowledge regarding the immune recognition and immunomodulatory functions of bacterial membrane vesicles in mammalian hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi Badi S, Khatami SH, Irani SH, Siadat SD (2019) Induction effects of Bacteroides fragilis derived outer membrane vesicles on toll like receptor 2, toll like receptor 4 genes expression and cytokines concentration in human intestinal epithelial cells. Cell J 21(1):57–61

    PubMed  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4(7):499–511

    Article  CAS  PubMed  Google Scholar 

  • Alaniz RC, Deatherage BL, Lara JC, Cookson BT (2007) Membrane vesicles are immunogenic facsimiles of Salmonella Typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J Immunol 179(11):7692–7701

    Article  CAS  PubMed  Google Scholar 

  • Askarian F, Lapek JD Jr, Dongre M, Tsai CM, Kumaraswamy M, Kousha A, Valderrama JA, Ludviksen JA, Cavanagh JP, Uchiyama S, Mollnes TE, Gonzalez DJ, Wai SN, Nizet V, Johannessen M (2018) Staphylococcus aureus membrane-derived vesicles promote bacterial virulence and confer protective immunity in murine infection models. Front Microbiol 9:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Band VI, Weiss DS (2015) Mechanisms of antimicrobial peptide resistance in Gram-negative bacteria. Antibiotics (Basel) 4(1):18–41

    Article  CAS  Google Scholar 

  • Barrington R, Zhang M, Fischer M, Carroll MC (2001) The role of complement in inflammation and adaptive immunity. Immunol Rev 180:5–15

    Article  CAS  PubMed  Google Scholar 

  • Bauman SJ, Kuehn MJ (2006) Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect 8(9-10):2400–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauman SJ, Kuehn MJ (2009) Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol 9:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LY, Heipieper HJ (2012) Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 78(17):6217–6224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielig H, Rompikuntal PK, Dongre M, Zurek B, Lindmark B, Ramstedt M, Wai SN, Kufer TA (2011) NOD-like receptor activation by outer membrane vesicles from Vibrio cholerae non-O1 non-O139 strains is modulated by the quorum-sensing regulator HapR. Infect Immun 79(4):1418–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O’Toole GA, Stanton BA (2009) Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5(4):e1000382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boxx GM, Cheng G (2016) The roles of type I interferon in bacterial infection. Cell Host Microbe 19(6):760–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    Article  CAS  PubMed  Google Scholar 

  • Bruno VM, Hannemann S, Lara-Tejero M, Flavell RA, Kleinstein SH, Galan JE (2009) Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog 5(8):e1000538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho AI, Irache JM, de Souza J, Sanchez-Gomez S, Gamazo C (2013) Nanoparticle-based vaccine for mucosal protection against Shigella flexneri in mice. Vaccine 31(32):3288–3294

    Article  CAS  PubMed  Google Scholar 

  • Canas MA, Gimenez R, Fabrega MJ, Toloza L, Baldoma L, Badia J (2016) Outer membrane vesicles from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent endocytosis and elicit differential effects on DNA damage. PLoS One 11(8):e0160374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh JP, Pain M, Askarian F, Bruun JA, Urbarova I, Wai SN, Schmidt F, Johannessen M (2018) Comparative exoproteome profiling of an invasive and a commensal Staphylococcus haemolyticus isolate. J Proteomics 197:106–114

    Article  CAS  PubMed  Google Scholar 

  • Cecil JD, Sirisaengtaksin N, O’Brien-Simpson NM, Krachler AM (2019) Outer membrane vesicle-host cell interactions. Microbiol Spectr 7(1)

    Google Scholar 

  • Chatterjee D, Chaudhuri K (2013) Vibrio cholerae O395 outer membrane vesicles modulate intestinal epithelial cells in a NOD1 protein-dependent manner and induce dendritic cell-mediated Th2/Th17 cell responses. J Biol Chem 288(6):4299–4309

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee SN, Das J (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol 49(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Chi B, Qi M, Kuramitsu HK (2003) Role of dentilisin in Treponema denticola epithelial cell layer penetration. Res Microbiol 154(9):637–643

    Article  CAS  PubMed  Google Scholar 

  • Choi DS, Kim DK, Choi SJ, Lee J, Choi JP, Rho S, Park SH, Kim YK, Hwang D, Gho YS (2011) Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics 11(16):3424–3429

    Article  CAS  PubMed  Google Scholar 

  • Choi SJ, Kim MH, Jeon J, Kim OY, Choi Y, Seo J, Hong SW, Lee WH, Jeon SG, Gho YS, Jee YK, Kim YK (2015) Active immunization with extracellular vesicles derived from Staphylococcus aureus effectively protects against staphylococcal lung infections, mainly via Th1 cell-mediated immunity. PLoS One 10(9):e0136021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JM, Carvalho HM, Rasmussen SB, O’Brien AD (2006) Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis. Infect Immun 74(8):4401–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deknuydt F, Nordstrom T, Riesbeck K (2014) Diversion of the host humoral response: a novel virulence mechanism of Haemophilus influenzae mediated via outer membrane vesicles. J Leukoc Biol 95(6):983–991

    Article  CAS  PubMed  Google Scholar 

  • Deo P, Chow SH, Hay ID, Kleifeld O, Costin A, Elgass KD, Jiang JH, Ramm G, Gabriel K, Dougan G, Lithgow T, Heinz E, Naderer T (2018) Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog 14(3):e1006945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan L, Yoshioka M, Chandad F, Grenier D (2004) Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog 36(6):319–325

    Article  CAS  PubMed  Google Scholar 

  • Duperthuy M, Sjostrom AE, Sabharwal D, Damghani F, Uhlin BE, Wai SN (2013) Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog 9(10):e1003620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand V, Mackenzie J, de Leon J, Mesa C, Quesniaux V, Montoya M, Le Bon A, Wong SY (2009) Role of lipopolysaccharide in the induction of type I interferon-dependent cross-priming and IL-10 production in mice by meningococcal outer membrane vesicles. Vaccine 27(13):1912–1922

    Article  CAS  PubMed  Google Scholar 

  • Elliott EI, Sutterwala FS (2015) Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265(1):35–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74(1):81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis TN, Leiman SA, Kuehn MJ (2010) Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect Immun 78(9):3822–3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmi A, Watson E, Sandu P, Gundogdu O, Mills DC, Inglis NF, Manson E, Imrie L, Bajaj-Elliott M, Wren BW, Smith DG, Dorrell N (2012) Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect Immun 80(12):4089–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantappie L, de Santis M, Chiarot E, Carboni F, Bensi G, Jousson O, Margarit I, Grandi G (2014) Antibody-mediated immunity induced by engineered Escherichia coli OMVs carrying heterologous antigens in their lumen. J Extracell Vesicles 3

    Google Scholar 

  • Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ, Polentarutti N, Muzio M, Arditi M (2000) Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 275(15):11058–11063

    Article  CAS  PubMed  Google Scholar 

  • Fiocca R, Necchi V, Sommi P, Ricci V, Telford J, Cover TL, Solcia E (1999) Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol 188(2):220–226

    Article  CAS  PubMed  Google Scholar 

  • Fritz JH, Le Bourhis L, Sellge G, Magalhaes JG, Fsihi H, Kufer TA, Collins C, Viala J, Ferrero RL, Girardin SE, Philpott DJ (2007) Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26(4):445–459

    Article  CAS  PubMed  Google Scholar 

  • Furuta N, Takeuchi H, Amano A (2009) Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. Infect Immun 77(11):4761–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galka F, Wai SN, Kusch H, Engelmann S, Hecker M, Schmeck B, Hippenstiel S, Uhlin BE, Steinert M (2008) Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 76(5):1825–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003a) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587

    Article  CAS  PubMed  Google Scholar 

  • Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003b) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Meng R, Tang Y, Zhao K, Liang F, Zhang R, Xue Q, Chen F, Xiao X, Wang H, Wang H, Billiar TR, Lu B (2019) Toll-like receptor 4 signaling licenses the cytosolic transport of lipopolysaccharide from bacterial outer membrane vesicles. Shock 51(2):256–265

    Article  CAS  PubMed  Google Scholar 

  • Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667

    Article  CAS  PubMed  Google Scholar 

  • Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI (2000) Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect Immun 68(11):6139–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurung M, Moon DC, Choi CW, Lee JH, Bae YC, Kim J, Lee YC, Seol SY, Cho DT, Kim SI, Lee JC (2011) Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS One 6(11):e27958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey CA, Kuhn KA, Donermeyer DL, Porter NT, Jin C, Cameron EA, Jung H, Kaiko GE, Wegorzewska M, Malvin NP, Glowacki RW, Hansson GC, Allen PM, Martens EC, Stappenbeck TS (2015) Colitogenic Bacteroides thetaiotaomicron antigens access host immune cells in a sulfatase-dependent manner via outer membrane vesicles. Cell Host Microbe 17(5):672–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holst J, Martin D, Arnold R, Huergo CC, Oster P, O’Hallahan J, Rosenqvist E (2009) Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine 27(Suppl 2):B3–B12

    Article  CAS  PubMed  Google Scholar 

  • Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10(8):525–537

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Yao Y, Long Q, Yang X, Sun W, Liu C, Jin X, Li Y, Chu X, Chen B, Ma Y (2014) Immunization against multidrug-resistant Acinetobacter baumannii effectively protects mice in both pneumonia and sepsis models. PLoS One 9(6):e100727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes SO, Keenan JI, Ferris JA, Annuk H, Moran AP (2005) Lewis epitopes on outer membrane vesicles of relevance to Helicobacter pylori pathogenesis. Helicobacter 10(2):146–156

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi R, Cho T, Kaminishi H (2011) NO production in RAW264 cells stimulated with Porphyromonas gingivalis extracellular vesicles. Oral Dis 17(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Inaba K, Metlay JP, Crowley MT, Steinman RM (1990) Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med 172(2):631–640

    Article  CAS  PubMed  Google Scholar 

  • Inohara N, Nunez G (2001) The NOD: a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 20(44):6473–6481

    Article  CAS  PubMed  Google Scholar 

  • Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, Ogura Y, Nunez G (2000) An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 275(36):27823–27831

    CAS  PubMed  Google Scholar 

  • Irving AT, Mimuro H, Kufer TA, Lo C, Wheeler R, Turner LJ, Thomas BJ, Malosse C, Gantier MP, Casillas LN, Votta BJ, Bertin J, Boneca IG, Sasakawa C, Philpott DJ, Ferrero RL, Kaparakis-Liaskos M (2014) The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe 15(5):623–635

    Article  CAS  PubMed  Google Scholar 

  • Ismail S, Hampton MB, Keenan JI (2003) Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infect Immun 71(10):5670–5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagels MA, Travis J, Potempa J, Pike R, Hugli TE (1996) Proteolytic inactivation of the leukocyte C5a receptor by proteinases derived from Porphyromonas gingivalis. Infect Immun 64(6):1984–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jager J, Marwitz S, Tiefenau J, Rasch J, Shevchuk O, Kugler C, Goldmann T, Steinert M (2014) Human lung tissue explants reveal novel interactions during Legionella pneumophila infections. Infect Immun 82(1):275–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Guo B, Yang W, Zhao Q, Jia W, Wu Y (2015) Rho kinase mediates Porphyromonas gingivalis outer membrane vesicle-induced suppression of endothelial nitric oxide synthase through ERK1/2 and p38 MAPK. Arch Oral Biol 60(3):488–495

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Kong Q, Roland KL, Curtiss R 3rd (2014) Membrane vesicles of Clostridium perfringens type A strains induce innate and adaptive immunity. Int J Med Microbiol 304(3-4):431–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin JS, Kwon SO, Moon DC, Gurung M, Lee JH, Kim SI, Lee JC (2011) Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS One 6(2):e17027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joiner KA (1988) Complement evasion by bacteria and parasites. Annu Rev Microbiol 42:201–230

    Article  CAS  PubMed  Google Scholar 

  • Jun SH, Lee JH, Kim BR, Kim SI, Park TI, Lee JC, Lee YC (2013) Acinetobacter baumannii outer membrane vesicles elicit a potent innate immune response via membrane proteins. PLoS One 8(8):e71751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun SH, Lee JH, Kim SI, Choi CW, Park TI, Jung HR, Cho JW, Kim SH, Lee JC (2017) Staphylococcus aureus-derived membrane vesicles exacerbate skin inflammation in atopic dermatitis. Clin Exp Allergy 47(1):85–96

    Article  CAS  PubMed  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177(14):3998–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1998) Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob Agents Chemother 42(6):1476–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27(4):549–559

    Article  CAS  PubMed  Google Scholar 

  • Kaparakis M, Turnbull L, Carneiro L, Firth S, Coleman HA, Parkington HC, Le Bourhis L, Karrar A, Viala J, Mak J, Hutton ML, Davies JK, Crack PJ, Hertzog PJ, Philpott DJ, Girardin SE, Whitchurch CB, Ferrero RL (2010) Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol 12(3):372–385

    Article  CAS  PubMed  Google Scholar 

  • Kaparakis-Liaskos M, Ferrero RL (2015) Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol 15(6):375–387

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Kowashi Y, Demuth DR (2002) Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog 32(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1–20

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  • Keenan J, Day T, Neal S, Cook B, Perez-Perez G, Allardyce R, Bagshaw P (2000) A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori infection. FEMS Microbiol Lett 182(2):259–264

    Article  CAS  PubMed  Google Scholar 

  • Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ (2004) Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 23(23):4538–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Yoon YJ, Lee J, Choi EJ, Yi N, Park KS, Park J, Lotvall J, Kim YK, Gho YS (2013a) Outer membrane vesicles derived from Escherichia coli up-regulate expression of endothelial cell adhesion molecules in vitro and in vivo. PLoS One 8(3):e59276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim OY, Hong BS, Park KS, Yoon YJ, Choi SJ, Lee WH, Roh TY, Lotvall J, Kim YK, Gho YS (2013b) Immunization with Escherichia coli outer membrane vesicles protects bacteria-induced lethality via Th1 and Th17 cell responses. J Immunol 190(8):4092–4102

    Article  CAS  PubMed  Google Scholar 

  • Kouokam JC, Wai SN, Fallman M, Dobrindt U, Hacker J, Uhlin BE (2006) Active cytotoxic necrotizing factor 1 associated with outer membrane vesicles from uropathogenic Escherichia coli. Infect Immun 74(4):2022–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388(4):621–625

    Article  CAS  PubMed  Google Scholar 

  • Lapinet JA, Scapini P, Calzetti F, Perez O, Cassatella MA (2000) Gene expression and production of tumor necrosis factor alpha, interleukin-1beta (IL-1beta), IL-8, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and gamma interferon-inducible protein 10 by human neutrophils stimulated with group B meningococcal outer membrane vesicles. Infect Immun 68(12):6917–6923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lappann M, Danhof S, Guenther F, Olivares-Florez S, Mordhorst IL, Vogel U (2013) In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps. Mol Microbiol 89(3):433–449

    Article  CAS  PubMed  Google Scholar 

  • Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, Kim SH, Desiderio DM, Kim YK, Kim KP, Gho YS (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9(24):5425–5436

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Yoon YJ, Kim JH, Dinh NTH, Go G, Tae S, Park KS, Park HT, Lee C, Roh TY, Di Vizio D, Gho YS (2018) Outer membrane vesicles derived from Escherichia coli regulate neutrophil migration by induction of endothelial IL-8. Front Microbiol 9:2268

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim JP, Gleeson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89(8):836–843

    Article  CAS  PubMed  Google Scholar 

  • Lindmark B, Rompikuntal PK, Vaitkevicius K, Song T, Mizunoe Y, Uhlin BE, Guerry P, Wai SN (2009) Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol 9:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macdonald IA, Kuehn MJ (2013) Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J Bacteriol 195(13):2971–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4(6):478–485

    Article  CAS  PubMed  Google Scholar 

  • Maerz JK, Steimle A, Lange A, Bender A, Fehrenbacher B, Frick JS (2018) Outer membrane vesicles blebbing contributes to B. vulgatus mpk-mediated immune response silencing. Gut Microbes 9(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Manning AJ, Kuehn MJ (2011) Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 11:258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  • McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63(2):545–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ (2006) Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol 188(15):5385–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3):295–298

    Article  CAS  PubMed  Google Scholar 

  • Milward MR, Chapple IL, Wright HJ, Millard JL, Matthews JB, Cooper PR (2007) Differential activation of NF-kappaB and gene expression in oral epithelial cells by periodontal pathogens. Clin Exp Immunol 148(2):307–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskowitz SM, Ernst RK, Miller SI (2004) PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186(2):575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakao R, Takashiba S, Kosono S, Yoshida M, Watanabe H, Ohnishi M, Senpuku H (2014) Effect of Porphyromonas gingivalis outer membrane vesicles on gingipain-mediated detachment of cultured oral epithelial cells and immune responses. Microbes Infect 16(1):6–16

    Article  CAS  PubMed  Google Scholar 

  • Namork E, Brandtzaeg P (2002) Fatal meningococcal septicaemia with “blebbing” meningococcus. Lancet 360(9347):1741

    Article  PubMed  Google Scholar 

  • Nieves W, Asakrah S, Qazi O, Brown KA, Kurtz J, Aucoin DP, McLachlan JB, Roy CJ, Morici LA (2011) A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine 29(46):8381–8389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donoghue EJ, Krachler AM (2016) Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol 18(11):1508–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olaya-Abril A, Prados-Rosales R, McConnell MJ, Martin-Pena R, Gonzalez-Reyes JA, Jimenez-Munguia I, Gomez-Gascon L, Fernandez J, Luque-Garcia JL, Garcia-Lidon C, Estevez H, Pachon J, Obando I, Casadevall A, Pirofski LA, Rodriguez-Ortega MJ (2014) Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J Proteome 106:46–60

    Article  CAS  Google Scholar 

  • Olofsson A, Nygard Skalman L, Obi I, Lundmark R, Arnqvist A (2014) Uptake of Helicobacter pylori vesicles is facilitated by clathrin-dependent and clathrin-independent endocytic pathways. MBio 5(3):e00979–e00914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker H, Chitcholtan K, Hampton MB, Keenan JI (2010) Uptake of Helicobacter pylori outer membrane vesicles by gastric epithelial cells. Infect Immun 78(12):5054–5061

    Article  PubMed  PubMed Central  Google Scholar 

  • Pathirana RD, Kaparakis-Liaskos M (2016) Bacterial membrane vesicles: biogenesis, immune regulation and pathogenesis. Cell Microbiol 18(11):1518–1524

    Article  CAS  PubMed  Google Scholar 

  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193(9):1067–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14(3):141–153

    Article  CAS  PubMed  Google Scholar 

  • Pollak CN, Delpino MV, Fossati CA, Baldi PC (2012) Outer membrane vesicles from Brucella abortus promote bacterial internalization by human monocytes and modulate their innate immune response. PLoS One 7(11):e50214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi M, Miyakawa H, Kuramitsu HK (2003) Porphyromonas gingivalis induces murine macrophage foam cell formation. Microb Pathog 35(6):259–267

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Walker AN, Daines DA (2012) Toxin-antitoxin loci vapBC-1 and vapXD contribute to survival and virulence in nontypeable Haemophilus influenzae. BMC Microbiol 12:263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renelli M, Matias V, Lo RY, Beveridge TJ (2004) DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150(Pt 7):2161–2169

    Article  CAS  PubMed  Google Scholar 

  • Rewatkar PV, Parton RG, Parekh HS, Parat MO (2015) Are caveolae a cellular entry route for non-viral therapeutic delivery systems? Adv Drug Deliv Rev 91:92–108

    Article  CAS  PubMed  Google Scholar 

  • Rhee KJ, Sethupathi P, Driks A, Lanning DK, Knight KL (2004) Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol 172(2):1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A (2010) Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci U S A 107(44):19002–19007

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S, Reis e Sousa C (2006) Myeloid C-type lectins in innate immunity. Nat Immunol 7(12):1258–1265

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Pinto D (2005) B cells as antigen presenting cells. Cell Immunol 238(2):67–75

    Article  CAS  PubMed  Google Scholar 

  • Roier S, Leitner DR, Iwashkiw J, Schild-Prufert K, Feldman MF, Krohne G, Reidl J, Schild S (2012) Intranasal immunization with nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice. PLoS One 7(8):e42664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rus H, Cudrici C, Niculescu F (2005) The role of the complement system in innate immunity. Immunol Res 33(2):103–112

    Article  CAS  PubMed  Google Scholar 

  • Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188(16):5945–5957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327(5963):296–300

    Article  CAS  PubMed  Google Scholar 

  • Schultz H, Hume J, Zhang DS, Gioannini TL, Weiss JP (2007) A novel role for the bactericidal/permeability increasing protein in interactions of gram-negative bacterial outer membrane blebs with dendritic cells. J Immunol 179(4):2477–2484

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13(10):605–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe SW, Kuehn MJ, Mason KM (2011) Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect Immun 79(11):4361–4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK (2012) Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12(4):509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192

    Article  CAS  PubMed  Google Scholar 

  • Soult MC, Lonergan NE, Shah B, Kim WK, Britt LD, Sullivan CJ (2013) Outer membrane vesicles from pathogenic bacteria initiate an inflammatory response in human endothelial cells. J Surg Res 184(1):458–466

    Article  CAS  PubMed  Google Scholar 

  • Soult MC, Dobrydneva Y, Wahab KH, Britt LD, Sullivan CJ (2014) Outer membrane vesicles alter inflammation and coagulation mediators. J Surg Res 192(1):134–142

    Article  CAS  PubMed  Google Scholar 

  • Srisatjaluk R, Kotwal GJ, Hunt LA, Justus DE (2002) Modulation of gamma interferon-induced major histocompatibility complex class II gene expression by Porphyromonas gingivalis membrane vesicles. Infect Immun 70(3):1185–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99(24):15451–15455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stentz R, Osborne S, Horn N, Li AW, Hautefort I, Bongaerts R, Rouyer M, Bailey P, Shears SB, Hemmings AM, Brearley CA, Carding SR (2014) A bacterial homolog of a eukaryotic inositol phosphate signaling enzyme mediates cross-kingdom dialog in the mammalian gut. Cell Rep 6(4):646–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens DS, Edwards KM, Morris F, McGee ZA (1982) Pili and outer membrane appendages on Neisseria meningitidis in the cerebrospinal fluid of an infant. J Infect Dis 146(4):568

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  CAS  PubMed  Google Scholar 

  • Tan TT, Morgelin M, Forsgren A, Riesbeck K (2007) Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J Infect Dis 195(11):1661–1670

    Article  CAS  PubMed  Google Scholar 

  • Tavano R, Franzoso S, Cecchini P, Cartocci E, Oriente F, Arico B, Papini E (2009) The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA-OMVs, without further stimulating their proinflammatory activity on circulating monocytes. J Leukoc Biol 86(1):143–153

    Article  CAS  PubMed  Google Scholar 

  • Thay B, Wai SN, Oscarsson J (2013) Staphylococcus aureus alpha-toxin-dependent induction of host cell death by membrane-derived vesicles. PLoS One 8(1):e54661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thay B, Damm A, Kufer TA, Wai SN, Oscarsson J (2014) Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1- and NOD2-dependent NF-kappaB activation. Infect Immun 82(10):4034–4046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CJ, Schroder K (2013) Pattern recognition receptor function in neutrophils. Trends Immunol 34(7):317–328

    Article  CAS  PubMed  Google Scholar 

  • Turner L, Bitto NJ, Steer DL, Lo C, D’Costa K, Ramm G, Shambrook M, Hill AF, Ferrero RL, Kaparakis-Liaskos M (2018) Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content. Front Immunol 9:1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unanue ER (1984) Antigen-presenting function of the macrophage. Annu Rev Immunol 2:395–428

    Article  CAS  PubMed  Google Scholar 

  • Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, Deshmukh SD, Rathinam VAK (2016) Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165(5):1106–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan AT, Gorringe A, Davenport V, Williams NA, Heyderman RS (2009) Absence of mucosal immunity in the human upper respiratory tract to the commensal bacteria Neisseria lactamica but not pathogenic Neisseria meningitidis during the peak age of nasopharyngeal carriage. J Immunol 182(4):2231–2240

    Article  CAS  PubMed  Google Scholar 

  • Vaughan AT, Brackenbury LS, Massari P, Davenport V, Gorringe A, Heyderman RS, Williams NA (2010) Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig. J Immunol 185(6):3652–3660

    Article  CAS  PubMed  Google Scholar 

  • Vidakovics ML, Jendholm J, Morgelin M, Mansson A, Larsson C, Cardell LO, Riesbeck K (2010) B cell activation by outer membrane vesicles—a novel virulence mechanism. PLoS Pathog 6(1):e1000724

    Article  CAS  PubMed  Google Scholar 

  • Wai SN, Lindmark B, Soderblom T, Takade A, Westermark M, Oscarsson J, Jass J, Richter-Dahlfors A, Mizunoe Y, Uhlin BE (2003) Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Thompson CD, Weidenmaier C, Lee JC (2018) Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun 9(1):1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JM, Rossi O, Meijerink M, van Baarlen P (2011) Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A 108(Suppl 1):4607–4614

    Article  PubMed  Google Scholar 

  • Winter J, Letley D, Rhead J, Atherton J, Robinson K (2014) Helicobacter pylori membrane vesicles stimulate innate pro- and anti-inflammatory responses and induce apoptosis in Jurkat T cells. Infect Immun 82(4):1372–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, Hanawa T, Kamiya S (2009) Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 9:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon H, Ansong C, Adkins JN, Heffron F (2011) Discovery of Salmonella virulence factors trans located via outer membrane vesicles to murine macrophages. Infect Immun 79(6):2182–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young GM, Schmiel DH, Miller VL (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96(11):6456–6461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun SH, Park EC, Lee SY, Lee H, Choi CW, Yi YS, Ro HJ, Lee JC, Jun S, Kim HY, Kim GH, Kim SI (2018) Antibiotic treatment modulates protein components of cytotoxic outer membrane vesicles of multidrug-resistant clinical strain, Acinetobacter baumannii DU202. Clin Proteomics 15:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Thomas CE, Chen CJ, Van Dam CN, Johnston RE, Davis NL, Sparling PF (2005) Comparison of immune responses to gonococcal PorB delivered as outer membrane vesicles, recombinant protein, or Venezuelan equine encephalitis virus replicon particles. Infect Immun 73(11):7558–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kaparakis-Liaskos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnston, E.L., Kufer, T.A., Kaparakis-Liaskos, M. (2020). Immunodetection and Pathogenesis Mediated by Bacterial Membrane Vesicles. In: Kaparakis-Liaskos, M., Kufer, T. (eds) Bacterial Membrane Vesicles. Springer, Cham. https://doi.org/10.1007/978-3-030-36331-4_8

Download citation

Publish with us

Policies and ethics