Skip to main content

Precipitation Kinetics and Evaluation of the Interfacial Mobility of Precipitates in an AlSi7Cu0.5Mg0.3 Cast Alloy

  • Conference paper
  • First Online:
TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Abstract

Heat treatment of cast aluminum alloy parts enables the formation and distribution of nano-sized precipitates through an optimum sequence including solutionizing, quenching, and artificial aging. Quaternary alloys are particularly challenging, and the present study aims to understand and outline the precipitation kinetics in the foundry AlSi7Cu0.5Mg0.3 alloy. Using techniques like differential scanning calorimetry (DSC), transmission electron microscopy (TEM), LKSZ kinetic equations, and microhardness testing, the precipitation kinetics was quantitatively characterized. Activation energies of the phase transformations were extracted using the Kissinger analysis of non-isothermal DSC runs conducted at different stationary heating rates. Finally, a first evaluation of the interfacial mobility of precipitates in this alloy was made using the developed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Larouche D (2017) Mixed mode growth of an ellipsoidal precipitate: analytical solution for shape preserving growth in the quasi-stationary regime. Acta Mater 123:188–196

    Article  CAS  Google Scholar 

  2. Naseri T, Larouche D, Martinez R, Breton F (2018) Mixed-mode growth of a multicomponent precipitate in the quasi-steady state regime. Mater Theory 2. https://doi.org/10.1186/s41313-018-0011-y

  3. Heugue P, Larouche D, Breton F, Martinez R, Chen XG (2019) Evaluation of the Growth Kinetics of θ′ and θ-Al2Cu precipitates in a binary Al-3.5 Wt Pct Cu alloy. Metall Mater Trans A 50:3048–3060. https://doi.org/10.1007/s11661-019-05227-8

  4. Heugue P, Larouche D, Breton F, Massinon D, Martinez R, Chen X-G (2019) Precipitation kinetics and evaluation of the interfacial mobility of precipitates in an AlSi7Cu3.5Mg0.15 cast alloy with Zr and V additions. Metals 9:777

    Google Scholar 

  5. Edwards GA, Stiller K, Dunlop GL, Couper MJ (1998) The precipitation sequence in Al–Mg–Si alloys. Acta Mater 46:3893–3904

    Article  CAS  Google Scholar 

  6. Ding L, Jia Z, Nie J-F, Weng Y, Cao L, Chen H, Wu X, Liu Q (2018) The structural and compositional evolution of precipitates in Al–Mg–Si–Cu alloy. Acta Mater 145:437–450. https://doi.org/10.1016/j.actamat.2017.12.036

    Article  CAS  Google Scholar 

  7. Lombardi A, D’Elia F, Ravindran C, MacKay R (2014) Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings. Mater Charact 87:125–137. https://doi.org/10.1016/j.matchar.2013.11.006

    Article  CAS  Google Scholar 

  8. Dutta I, Allen SM (1991) A calorimetric study of precipitation in commercial aluminium alloy 6061. J Mater Sci Lett 10:323–326

    Article  CAS  Google Scholar 

  9. Li H, Yan Z, Cao L (2018) Bake hardening behavior and precipitation kinetic of a novel Al–Mg–Si–Cu aluminum alloy for lightweight automotive body. Mater Sci Eng, A 728:88–94. https://doi.org/10.1016/j.msea.2018.05.014

    Article  CAS  Google Scholar 

  10. Buha J, Lumley RN, Crosky AG (2008) Precipitation and solute distribution in an interrupted-aged Al–Mg–Si–Cu alloy. Phil Mag 88:373–390. https://doi.org/10.1080/14786430701847949

    Article  CAS  Google Scholar 

  11. Chen SP, Mussert KM, Van Derzwaag S (1998) Precipitation kinetics in Al6061 and Al6061-alumina particle composite. J Mater Sci 4477–4483

    Google Scholar 

  12. Buha J, Lumley RN, Crosky AG, Hono K (2007) Secondary precipitation in an Al–Mg–Si–Cu alloy. Acta Mater 55:3015–3024. https://doi.org/10.1016/j.actamat.2007.01.006

    Article  CAS  Google Scholar 

  13. Povoden-Karadeniz E (2015) Thermodynamic Data from MatCalc Database ‘mc_al.tdb’. 2.030 edn

    Google Scholar 

  14. Yang W, Wang M, Jia Y, Zhang R (2011) Studies of orientations of β″ precipitates in Al–Mg–Si–(Cu) alloys by electron diffraction and transition matrix analysis. Metall Mater Trans A 42:2917–2929. https://doi.org/10.1007/s11661-011-0680-5

    Article  CAS  Google Scholar 

  15. Ding L, Jia Z, Zhang Z, Sanders RE, Liu Q, Yang G (2015) The natural aging and precipitation hardening behaviour of Al–Mg–Si–Cu alloys with different Mg/Si ratios and Cu additions. Mater Sci Eng, A 627:119–126. https://doi.org/10.1016/j.msea.2014.12.086

    Article  CAS  Google Scholar 

  16. Chakrabarti DJ, Laughlin DE (2004) Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog Mater Sci 49:389–410. https://doi.org/10.1016/s0079-6425(03)00031-8

    Article  CAS  Google Scholar 

  17. Biswas A, Siegel DJ, Seidman DN (2014) Compositional evolution of Q-phase precipitates in an aluminum alloy. Acta Mater 75:322–336. https://doi.org/10.1016/j.actamat.2014.05.001

    Article  CAS  Google Scholar 

  18. Matsuda K, Ikeno S, Uetani Y, Sato T (2001) Metastable phases in an Al–Mg–Si alloy containing copper. Metall Mater Trans A 32:1293–1299. https://doi.org/10.1007/s11661-001-0219-2

    Article  Google Scholar 

  19. Eskin DG (2003) Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys. J Mater Sci 38:279–290. https://doi.org/10.1023/a:1021109514892

    Article  CAS  Google Scholar 

  20. Andersen SJ, Zandbergen HW, Jansen J, TrÆholt C, Tundal U, Reiso O (1998) The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Mater 46:3283–3298. https://doi.org/10.1016/S1359-6454(97)00493-X

    Article  CAS  Google Scholar 

  21. Starink MJ, Zahra AM (1998) β′ and β precipitation in an Al–Mg alloy studied by DSC and TEM. Acta Mater 46:3381–3397. https://doi.org/10.1016/s1359-6454(98)00053-6

    Article  CAS  Google Scholar 

  22. Vissers R, van Huis MA, Jansen J, Zandbergen HW, Marioara CD, Andersen SJ (2007) The crystal structure of the β′ phase in Al–Mg–Si alloys. Acta Mater 55:3815–3823. https://doi.org/10.1016/j.actamat.2007.02.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support (NSERC Grant RDCPJ 468550—548 14) and also to Montupet and Rio Tinto ARDC teams for their collaboration. The authors are also grateful to J.-P. Masse from (CM)2 at École Polytechnique de Montreal for his strong collaboration in conducting the TEM observations and Daniel Marcotte, Nathalie Moisan, Hervé Plancke, and Dr. Marc Choquette for sharing their valuable knowledge and technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Larouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heugue, P., Larouche, D., Breton, F., Martinez, R., Chen, X.G., Massinon, D. (2020). Precipitation Kinetics and Evaluation of the Interfacial Mobility of Precipitates in an AlSi7Cu0.5Mg0.3 Cast Alloy. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_167

Download citation

Publish with us

Policies and ethics