Skip to main content

Abstract

In our day-to-day life, plastics are the most unavoidable material, playing a vital role in human lifestyle. Plastics are organic polymers, possessing high molecular mass of long chains of hydrocarbons and other molecules. Plastics are very stable molecules and not readily degradable or transformable. Hence, plastic pollution is considered as a major serious threat to the environment and other living creatures. There are physical, chemical, and biological methods available to overcome the problem. Conventional biological methods including enzymatic process of plastic degradation are inadequate in efficacy due to environmental constraints. Commonly, landfills and incineration are performed to dispose plastic wastes which cause reduction in water absorbance in the soil, leading to soil infertility. Disposal of plastic wastes into water systems leads to accumulations in aquatic organisms which threatens aquatic biotic systems. Other methods of degradation are time-consuming and less reliable. Nanoparticles possess distinctive potentiality in polymer degradation by enhancing the degradation process through influencing the growth of suitable microorganisms and being great catalysts for degradation or transformation process. There are different forms of nanoparticles available to enhance physicochemical stability and degradability. The present review discusses in depth the different nanoparticles for plastic degradation and the applicability of nanoplastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bhat V, Rao P, Patil Y (2012) Development of an integrated model to recover precious metals from electronic scrap – a novel strategy for e-waste management. Procedia Soc Behav Sci 37:397–406

    Article  Google Scholar 

  2. Borthakur A, Govind M (2017) Emerging trends in consumers’ E-waste disposal behaviour and awareness: a worldwide overview with special focus on India. Resour Conserv Recycl 117(B):1–12

    Google Scholar 

  3. Mundada MN, Kumar S, Shekdar AV (2004) E-waste: a new challenge for waste management in India. Int J Environ Stud 61(3):265–279. https://doi.org/10.1080/0020723042000176060

    Article  CAS  Google Scholar 

  4. Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2153–2166. https://doi.org/10.1098/rstb.2009.0053

    Article  CAS  Google Scholar 

  5. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605

    Article  CAS  Google Scholar 

  6. Wang H, Ding Z, Shi Q-M et al (2017) Anti-androgenic mechanisms of bisphenol a involve androgen receptor signalling pathway. Toxicology 387:10–16. https://doi.org/10.1016/j.tox.2017.06.007

    Article  CAS  Google Scholar 

  7. Vandenberg LN, Hauser R, Marcus M et al (2007) Human exposure to bisphenol a (BPA). Reprod Toxicol 24:139–177. https://doi.org/10.1016/j.reprotox.2007.07.010

    Article  CAS  Google Scholar 

  8. Ikezuki Y, Tsutsumi O, Takai Y et al (2002) Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17:2839–2841

    Article  CAS  Google Scholar 

  9. Yamada H, Furuta I, Kato EH et al (2002) Maternal serum and amniotic fluid bisphenol a concentrations in the early second trimester. Reprod Toxicol 16:735–739

    Article  CAS  Google Scholar 

  10. Engel SM, Levy B, Liu Z et al (2006) Xenobiotic phenols in early pregnancy amniotic fluid. Reprod Toxicol 21:110–112

    Article  CAS  Google Scholar 

  11. Ali K (2002) Pyrolysis of polystyrene plastic wastes with some organic compounds for enhancing styrene yield. Energy Sources 24(7):667–674. https://doi.org/10.1080/00908310290086590

    Article  CAS  Google Scholar 

  12. Kumar S, Maiti P (2016) Controlled biodegradation of polymers using nanoparticles and their applications. RSC Adv 6:67449–67480. https://doi.org/10.1039/C6RA08641A

    Article  CAS  Google Scholar 

  13. Rånby B (1989) Photodegradation and photo-oxidation of synthetic polymers. J Anal Appl Pyrolysis 15:237–247. https://doi.org/10.1016/0165-2370(89)85037-5

    Article  Google Scholar 

  14. Jensen JPT, Kops J (2003) Photochemical degradation of blends of polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide). J Polym Sci Polym Chem Ed 18(8):2737–2746

    Article  Google Scholar 

  15. O’Brine T, Thompson RC (2010) Degradation of plastic carrier bags in the marine environment. Mar Pollut Bull 60(12):2279–2283. https://doi.org/10.1016/j.marpolbul.2010.08.005

    Article  CAS  Google Scholar 

  16. Verma R, Singh S, DalaI MK et al (2017) Photocatalytic degradation of polypropylene film using TiO2-based nanomaterials under solar irradiation. Mater Des 133:10–18. https://doi.org/10.1016/j.matdes.2017.07.042

    Article  CAS  Google Scholar 

  17. Tayler DR (2004) Mechanistic aspects of the effect of stress on the rate of photochemical degradation reactions in polymers. J Macromol Sci Part C Polym Rev 44(4):351–388

    Article  Google Scholar 

  18. Teare DOH, Emmison N, Tonthat C, Bradley RH (2000) Cellular attachment to UV ozone modified polystyrene surfaces. Langmuir 16(6):2818–2824

    Article  CAS  Google Scholar 

  19. Kamerbeek G, Kroes H, Grolle W (1961) Thermal degradation of polymers. Soc Chem Ind Monogr 13:357

    CAS  Google Scholar 

  20. Kefeli AA, Razumovskii SD, Zaikov GY (1971) Interaction of polyethylene with ozone. Polym Sci USSR 13(4):904–911

    Article  Google Scholar 

  21. Razumovsky SD, Podmasteriyev VV, Zaikov G (1986) Kinetics of the growth of cracks on polyisoprene vulcanizates in ozone. Polym Degrad Stab 16:317–324

    Article  Google Scholar 

  22. Bovey FA, Winslow FH (1979) Macromolecules: an introduction to polymer science. Academic Press, London

    Google Scholar 

  23. Ozen BF, Floros JD, Nelson PE (2001) Effect of ozone (O3) gas on mechanical, thermal and barrier properties of plastic films used in food packaging. IFT Annual Meeting, New Orleans

    Google Scholar 

  24. Li J, Guo S, Li X (2006) Degradation kinetics of polystyrene and EPDM melts under ultrasonic irradiation. Polym Degrad Stab 89(1):6–14

    Article  Google Scholar 

  25. Schmidt-Naake G, Drache M, Weber M (2002) Combination of mechanochemical degradation of polymers with controlled free-radical polymerization. Macromol Chem Phys 203(15):2232–2238

    Article  CAS  Google Scholar 

  26. Inoue T, Miyazaki M, Kamitani M et al (2004) Mechanochemical dechlorination of polyvinyl chloride by co-grinding with various metal oxides. J Adv Powder Technol 15(2):215–225

    Article  CAS  Google Scholar 

  27. Lin YH, Yen HY (2006) Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons. Polym Degrad Stab 89(1):101–108

    Article  Google Scholar 

  28. Williams PT, Bagri R (2003) Hydrocarbon gases and oils from the recycling of polystyrene waste by catalytic pyrolysis. Int J Energy Res 28(1):31–44

    Article  Google Scholar 

  29. Wall LL, Madorsky SL, Brown DW, Straus S (1954) The depolymerization of polymethylene and polyethylene. J Am Chem Soc 76:3430–3437

    Article  CAS  Google Scholar 

  30. Marchant RE, Anderson JM, Phua K, Hiltner A (1984) In vivo biocompatibility studies. II. Biomer: preliminary cell adhesion and surface characterization studies. J Biomed Mater Res 18:309–315

    Article  CAS  Google Scholar 

  31. Anderson JPE (1989) Principles of and assay systems for biodegradation. In: Kamely D, Chakrabarty A, Omenn GS (eds) Biotechnology and biodegradation. Gulf Publishing Co., Houston

    Google Scholar 

  32. Raaman N, Rajitha N, Jayshree A, Jegadeesh R (2012) Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Indus Res 1(6):313–316

    Google Scholar 

  33. Kyaw BM (2012) Biodegradation of low-density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52(3):411–419. https://doi.org/10.1007/s12088-012-0250-6

    Article  CAS  Google Scholar 

  34. Yang Y, Yang J, Wu W-M et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086. https://doi.org/10.1021/acs.est.5b02661

    Article  CAS  Google Scholar 

  35. Cataldo F, Ricci G, Crescenzi V (2000) Ozonization of atactic and tactic polymers having vinyl, methylvinyl, and dimethylvinyl pendant groups. Polym Degrad Stab 67:421–426

    Article  CAS  Google Scholar 

  36. Arthur C, Baker J, Bamford H (2009) Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris. NOAA technical memorandum NOS-OR&R-30, pp 1–49

    Google Scholar 

  37. Ivar do Sul JA, Costa MF (2014) The present and future of microplastic pollution in the marine environment. Environ Pollut 185:352–364. https://doi.org/10.1016/j.envpol.2013.10.036

    Article  CAS  Google Scholar 

  38. Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499. https://doi.org/10.1016/j.envpol.2013.08.013

    Article  CAS  Google Scholar 

  39. Valencia J, Arias NP, Giraldo O, Rosales-Rivera A (2012) Synthesis and characterization of cobalt–manganese oxides. Phys B 407:3155–3157

    Article  CAS  Google Scholar 

  40. Frank SN, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide and sulphide in aqueous solutions at semiconductor powders. J Phys Chem 81:1484

    Article  CAS  Google Scholar 

  41. Kamat PV, Meisel D (2003) Nanoscience opportunities in environmental remediation. C.R. Chim 6:999–1007

    Article  CAS  Google Scholar 

  42. Abreu M, Morgado E, Jardim P, Marinkovic B (2012) The effect of anatase crystal morphology on the photocatalytic conversion of NO by TiO2-based nanomaterials. Open Chem 10(4):1183–1198. https://doi.org/10.2478/s11532-012-0040-3

    Article  CAS  Google Scholar 

  43. Kumar A, Pandey G (2018) Different methods used for the synthesis of TiO2 based nanomaterials: a review. Am J Nano Res Appl 6(1):1–10. https://doi.org/10.11648/j.nano.20180601.11

    Article  CAS  Google Scholar 

  44. Shang J, Chai M, Zhu Y (2003) Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst. J Solid State Chem 174(1):104–110. https://doi.org/10.1016/s0022-4596(03)00183-x

    Article  CAS  Google Scholar 

  45. Scoponi M, Cimmino S, Kaci M (2000) Photo-stabilisation mechanism under natural weathering and accelerated photo-oxidative conditions of LDPE films for agricultural applications. Polymer 41(22):7969–7980

    Article  CAS  Google Scholar 

  46. Zan L, Fa W, Wang S (2006) Novel photodegradable low-density polyethylene-TiO2 nanocomposite film. Environ Sci Technol 40:1681–1685

    Article  CAS  Google Scholar 

  47. Thomas RT, Nair V, Sandhyarani N (2013) TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: a mechanistic investigation. Colloids Surf A Physicochem Eng Asp 422:1–9. https://doi.org/10.1016/j.colsurfa.2013.01.017

    Article  CAS  Google Scholar 

  48. Pan C-C, Wu JCS (2006) Visible-light response Cr-doped TiO2−XNX photocatalysts. Mater Chem Phys 100(1):102–107. https://doi.org/10.1016/j.matchemphys.2005.12.013

    Article  CAS  Google Scholar 

  49. Fa W, Zan L, Gong C et al (2008) Solid-phase photocatalytic degradation of polystyrene with TiO2 modified by iron (II) phthalocyanine. Appl Catal B Environ 79:216–223. https://doi.org/10.1016/j.apcatb.2007.10.018

    Article  CAS  Google Scholar 

  50. Kapri A, Zaidi MGH, Satlewal A, Goel R (2010) SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium. Int Biodeterior Biodegrad 64:238–244

    Article  CAS  Google Scholar 

  51. Flores M, Colón N, Rivera O et al (2004) A study of the growth curves of C. xerosis and E. coli bacteria in mediums containing cobalt ferrite nanoparticles. Mater Res Soc Symp Proc 820. https://doi.org/10.1557/PROC-820-O8.17

  52. Afzal A, Kausar A, Siddiq M (2016) Perspectives of polystyrene composite with fullerene, carbon black, graphene, and carbon nanotube: a review. Polym-Plast Technol Eng 55(18):1988–2011. https://doi.org/10.1080/03602559.2016.1185632

    Article  CAS  Google Scholar 

  53. Sah A, Kapri A, Zaidi MGH et al (2010) Implications of Fullerene-60 upon in-vitro LDPE biodegradation. J Microbiol Biotechnol 20(5):908–916. https://doi.org/10.4014/jmb.0910.10025

    Article  CAS  Google Scholar 

  54. Kapri A, Zaidi MGH, Goel R (2009) Nanobarium titanate as supplement to accelerate plastic waste biodegradation by indigenous bacterial consortia. AIP Conf Proc 1147:469–474

    Article  CAS  Google Scholar 

  55. Revel M, Châtel A, Mouneyrac C (2018) Micro(nano)plastics: a threat to human health? Curr Opin Environ Sci Health 1:17–23. https://doi.org/10.1016/j.coesh.2017.10.003

    Article  Google Scholar 

  56. Dawson AL, Kawaguchi S, King CK et al (2018) Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat Commun 9:1001. https://doi.org/10.1038/s41467-018-03465-9

    Article  CAS  Google Scholar 

  57. Lambert S, Wagner M (2016) Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145:265–268

    Article  CAS  Google Scholar 

  58. Gigault J, Halle A, Baudrimont M et al (2018) Current opinion: what is a nanoplastic? Environ Pollut 235:1030–1034. https://doi.org/10.1016/j.envpol.2018.01.024

    Article  CAS  Google Scholar 

  59. Lim SL, Ng CT, Zou L et al (2019) Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology 13(8):1117–1132. https://doi.org/10.1080/17435390.2019.1640913

    Article  CAS  Google Scholar 

  60. Rist S, Baun A, Almeda R, Hartmann NB (2019) Ingestion and effects of micro- and nanoplastics in blue mussel (Mytilus edulis) larvae. Mar Pollut Bull 140:423–430. https://doi.org/10.1016/j.marpolbul.2019.01.069

    Article  CAS  Google Scholar 

  61. Plastics – The Facts 2016: an analysis of European plastics production. PlasticsEurope, pp 1–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

David, M., Prakash, L., Sangeetha, J., Naik, J., Thangadurai, D., Thimmappa, S.C. (2021). Degradation of Plastics Using Nanomaterials. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_74

Download citation

Publish with us

Policies and ethics