Skip to main content

Human-Robot Scaffolding, an Architecture to Support the Learning Process

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1092))

Included in the following conference series:

Abstract

Recognizing and diagnosing learner’s cognitive and emotional state to intervene assertively is an important aspect to improve learning processes. This mission that can be supported by social robots in educational contexts. A cognitive architecture to manage the robot’s social behavior with handling capacity is presented. The human-robot scaffolding architecture is composed of three systems: multimodal fusion, believes, and scaffolding. Those recognize verbal and nonverbal data from user and from the mechanical assembly task, acknowledges the user’s cognitive and emotional state according to the learning task and configure the actions of the robot based on the Flow Theory. It establishes relations between challenges and skills during the learning process, presenting also the theoretical analysis and explorative actions with children to build each subsystem of architecture. The present research contributes to the field of human-robot interaction by suggesting an architecture that seeks the robot’s proactive behavior according to learner’s needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alibali, M.W., Spencer, R.C., Knox, L., Kita, S.: Spontaneous gestures influence strategy choices in problem solving. Psychol. Sci. 22(9), 1138–1144 (2011)

    Article  Google Scholar 

  2. Knoll, A., Hildenbrandt, B., Zhang, J.: Instructing cooperating assembly robots through situated dialogues in natural language. In: 1997 Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 888–894. IEEE (1997)

    Google Scholar 

  3. Knoll, A.C.: Distributed contract networks of sensor agents with adaptive reconfiguration: modelling, simulation, implementation and experiments. J. Frankl. Inst. 338(6), 669–705 (2001)

    Article  Google Scholar 

  4. Knoll, A.: A basic system for multimodal robot instruction. In: Pragmatics and Beyond New Series, pp. 215–228 (2003)

    Chapter  Google Scholar 

  5. Alves-Oliveira, P., Janarthanam, S., Candeias, A., Deshmukh, A., Ribeiro, T., Hastie, H., Paiva, A., Aylett, R.: Towards dialogue dimensions for a robotic tutor in collaborative learning scenarios, pp. 862–867 (2014). https://doi.org/10.1109/ROMAN.2014.6926361

  6. Bainbridge, W.A., Hart, J.W., Kim, E.S., Scassellati, B.: The benefits of interactions with physically present robots over video-displayed agents. Int. J. Soc. Robot. 3(1), 41–52 (2011)

    Article  Google Scholar 

  7. Baxter, G.D., Ritter, F.E.: Designing abstract visual perceptual and motor action capabilities for use by cognitive models. Technical report 36, ERSC Center for Research and Development, Instruction and Training, Department of Psychology, University of Nottingham, (1996)

    Google Scholar 

  8. Blauvelt, G.R., Eisenberg, M.: Machineshop: A Design Environment for Supporting Children’s Construction of Mechanical Reasoning and Spatial Cognition. University of Colorado at Boulder, Boulder (2006)

    Google Scholar 

  9. Chandra, S., Alves-Oliveira, P., Lemaignan, S., Sequeira, P., Paiva, A., Dillenbourg, P.: Can a child feel responsible for another in the presence of a robot in a collaborative learning activity, pp. 167–172 (2015). https://doi.org/10.1109/ROMAN.2015.7333678

  10. Chrysafiadi, K., Virvou, M.: Student modeling for personalized education: a review of the literature. In: Advances in Personalized Web-Based Education, pp. 1–24. Springer (2015)

    Google Scholar 

  11. Chu, M., Kita, S.: The nature of gestures’ beneficial role in spatial problem solving. J. Exp. Psychol. Gen. 140(1), 102 (2011)

    Article  Google Scholar 

  12. Crandall, B., Klein, G.A., Hoffman, R.R.: Working Minds: A Practitioner’s Guide to Cognitive Task Analysis. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  13. d Baker, R.S., Corbett, A.T., Roll, I., Koedinger, K.R., Aleven, V., Cocea, M., Hershkovitz, A., de Caravalho, A.M.J.B., Mitrovic, A., Mathews, M.: Modeling and studying gaming the system with educational data mining. In: International Handbook of Metacognition and Learning Technologies, pp. 97–115. Springer, New York (2013)

    Chapter  Google Scholar 

  14. Essa, A.: A possible future for next generation adaptive learning systems. Smart Learn. Environ. 3(1), 16 (2016)

    Article  Google Scholar 

  15. Fisher, D., Frey, N.: Guided Instruction: How to Develop Confident and Successful Learners. ASCD, Chicago (2010)

    Google Scholar 

  16. Freire, T., Tavares, D., Silva, E., Teixeira, A.: Flow, leisure, and positive youth development. In: Flow Experience, pp. 163–178. Springer (2016)

    Google Scholar 

  17. Goldin-Meadow, S.: Talking and thinking with our hands. Curr. Dir. Psychol. Sci. 15(1), 34–39 (2006)

    Article  Google Scholar 

  18. Granados, L.F.M., Londoño, E.A.A.: Análisis de Protocolos: Posibilidad metodológica para el estudio de procesos cognitivos. Universidad Pedagógica Nacional (2001)

    Google Scholar 

  19. Hacker, D.J., Dunlosky, J., Graesser, A.C. (eds.): Handbook of Metacognition in Education. Routledge, Abingdon (2009)

    Google Scholar 

  20. Yan, H., Ang Jr., M.H., Poo, A.N.: A survey on perception methods for human–robot interaction in social robots. Int. J. Soc. Robot. 6(1), 85–119 (2014)

    Article  Google Scholar 

  21. Harmat, L., Andersen, F.Ø., Ullén, F., Wright, J., Sadlo, G. (eds.): Flow Experience: Empirical Research and Applications. Springer, Berlin (2016)

    Google Scholar 

  22. Hayes, B., Scassellati, B.: Challenges in shared-environment human-robot collaboration. In: Learning, vol. 8, p. 9 (2013)

    Google Scholar 

  23. Jarrassé, N., Sanguineti, V., Burdet, E.: Slaves no longer: review on role assignment for human-robot joint motor action. Adapt. Behav. 22(1), 70–82 (2014). https://doi.org/10.1177/1059712313481044. Cited by 4

    Article  Google Scholar 

  24. Kanda, T., Miyashita, T., Osada, T., Haikawa, Y., Ishiguro, H.: Analysis of humanoid appearances in human–robot interaction. IEEE Trans. Robot. 24(3), 725–735 (2008)

    Article  Google Scholar 

  25. Guerin, K.R., Riedel, S.D., Bohren, J., Hager, G.D.: Adjutant: a framework for flexible human-machine collaborative systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1392–1399. IEEE (2014)

    Google Scholar 

  26. Kim, M.C., Hannafin, M.J.: Scaffolding problem solving in technology-enhanced learning environments (TELEs): bridging research and theory with practice. Comput. Educ. 56(2), 403–417 (2011)

    Article  Google Scholar 

  27. Kort, B., Reilly, R.: Analytical models of emotions, learning and relationships: towards an affect-sensitive cognitive machine. In: Conference on Virtual Worlds and Simulation (VWSim 2002) (2002)

    Google Scholar 

  28. Kwak, S.S., Kim, Y., Kim, E., Shin, C., Cho, K.: What makes people empathize with an emotional robot? The impact of agency and physical embodiment on human empathy for a robot. In: 2013 IEEE RO-MAN, pp. 180–185. IEEE, August 2013

    Google Scholar 

  29. Mann, J.A., MacDonald, B.A., Kuo, I.H., Li, X., Broadbent, E.: People respond better to robots than computer tablets delivering healthcare instructions. Comput. Hum. Behav. 43, 112–117 (2015)

    Article  Google Scholar 

  30. Giuliani, M., Foster, M.E., Isard, A., Matheson, C., Oberlander, J., Knoll, A.: Situated reference in a hybrid human-robot interaction system. In: Proceedings of the 6th International Natural Language Generation Conference, pp. 67–75. Association for Computational Linguistics (2010)

    Google Scholar 

  31. Giuliani, M., Knoll, A.: Using embodied multimodal fusion to perform supportive and instructive robot roles in human-robot interaction. Int. J. Soc. Robot. 5(3), 345–356 (2013)

    Article  Google Scholar 

  32. Rickert, M., Foster, M.E., Giuliani, M., By, T., Panin, G., Knoll, A.: Integrating language, vision and action for human robot dialog systems. In: Universal Access in Human-Computer Interaction. Ambient Interaction, pp. 987–995. Springer (2007)

    Google Scholar 

  33. Foster, M.E., Bard, E.G., Guhe, M., Hill, R.L., Oberlander, J., Knoll, A.: The roles of haptic-ostensive referring expressions in cooperative, task-based human-robot dialogue. In: Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, pp. 295– 302. ACM (2008)

    Google Scholar 

  34. Foster, M.E., Giuliani, M., Isard, A., Matheson, C., Oberlander, J., Knoll, A.: Evaluating description and reference strategies in a cooperative human-robot dialogue system. In: IJCAI, pp. 1818–1823 (2009)

    Google Scholar 

  35. Tielman, M., Neerincx, M., Meyer, J.-J., Looije, R.: Adaptive emotional expression in robot-child interaction. In: Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction, pp. 407–414. ACM (2014)

    Google Scholar 

  36. National Research Council: Learning to think spatially: GIS as a support system in the K-12 curriculum. National Academies Press (2005)

    Google Scholar 

  37. Brooks, N.B., Barner, D., Frank, M., Goldin-Meadow, S.: The role of gesture in supporting mental representations: the case of mental abacus arithmetic. University of Chicago (2015)

    Google Scholar 

  38. Newell, A., Simon, H.A.: Human Problem Solving, vol. 104, no. 9. Prentice-Hall, Englewood Cliffs (1972)

    Google Scholar 

  39. Pea, R.D.: The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. J. Learn. Sci. 13(3), 423–451 (2004)

    Article  Google Scholar 

  40. Fournier-Viger, P., Nkambou, R., Nguifo, E.M., Mayers, A., Faghihi, U.: A multiparadigm intelligent tutoring system for robotic arm training. IEEE Trans. Learn. Technol. 6(4), 364–377 (2013)

    Article  Google Scholar 

  41. Ramacliandran, A., Scassellati, B.: Adapting difficulty levels in personalized robot-child tutoring interactions, vol. WS-14-07, pp. 56–59 (2014)

    Google Scholar 

  42. Reardon, C., Zhang, H., Wright, R., Parker, L.E.: Response prompting for intelligent robot instruction of students with intellectual disabilities, pp. 784– 790 (2015). https://doi.org/10.1109/ROMAN.2015.7333651

  43. Reardon, C., Zhang, H., Wright, R., Parker, L.E.: Response prompting for intelligent robot instruction of students with intellectual disabilities. In: 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 784–790. IEEE, August 2015

    Google Scholar 

  44. Reidsma, D.: The EASEL project: towards educational human-robot symbiotic interaction. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, vol. 9793, pp. 297–306 (2016). https://doi.org/10.1007/978-3-319-42417-0_27

    Chapter  Google Scholar 

  45. Serholt, S., Basedow, C.A., Barendregt, W., Obaid, M.: Comparing a humanoid tutor to a human tutor delivering an instructional task to children, pp. 1134–1141 (2015). https://doi.org/10.1109/HUMANOIDS.2014.7041511

  46. Tabak, I.: Synergy: a complement to emerging patterns of distributed scaffolding. J. Learn. Sci. 13(3), 305–335 (2004)

    Article  Google Scholar 

  47. Kanda, T., Hirano, T., Eaton, D., Ishiguro, H.: Interactive robots as social partners and peer tutors for children: a field trial. Hum.-Comput. Interact. 19(1), 61–84 (2004)

    Article  Google Scholar 

  48. Thien, N.D., Terracina, A., Iocchi, L., Mecella, M.: Robotic teaching assistance for the “tower of hanoi” problem. Int. J. Dist. Educ. Technol. 14(1), 64–76 (2016). https://doi.org/10.4018/IJDET.2016010104

    Article  Google Scholar 

  49. Müller, T., Ziaie, P., Knoll, A.: A wait-free real-time system for optimal distribution of vision tasks on multi-core architectures. In: ICINCO-RA, no. 1, pp. 301–306 (2008)

    Google Scholar 

  50. Turner, J.E., Waugh, R.M., Summers, J.J., Grove, C.M.: Implementing high-quality educational reform efforts: an interpersonal circumplex model bridging social and personal aspects of teachers’ motivation. In: Advances in Teacher Emotion Research, pp. 253–271. Springer (2009)

    Google Scholar 

  51. Van De Sande, B.: Properties of the Bayesian knowledge tracing model. JEDM-J. Educ. Data Min. 5(2), 1–10 (2013)

    Google Scholar 

  52. Salem, M., Eyssel, F., Rohlfing, K., Kopp, S., Joublin, F.: To err is human (-like): effects of robot gesture on perceived anthropomorphism and likability. Int. J. Soc. Robot. 5(3), 313–323 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work has also been promoted under the project CARELINK, AAL-CALL-2016- 049 funded by AAL JP, and co-funded by the European Commission and National Funding Authorities FCT from Portugal and the national institutions from Ireland, Belgium and Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Luis-Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, E., Páez, J., Luis-Ferreira, F., Sarraipa, J., Gonçalves, R. (2020). Human-Robot Scaffolding, an Architecture to Support the Learning Process. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-030-35990-4_43

Download citation

Publish with us

Policies and ethics