Skip to main content

Plant Growth-Promoting Rhizobacteria in Management of Soil-Borne Fungal Pathogens

  • Chapter
  • First Online:
Management of Fungal Pathogens in Pulses

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Soil-borne plant pathogens widely fall under the category of fungi, bacteria, and nematodes. They can survive for longer duration without a host plant. Their control and treatment become quite challenging because of its prevalent feature. Fusarium, Pythium, and Ralstonia are some of the pathogens causing diseases in pulses. The life cycle of soil-borne pathogens is inhibited by plant growth-promoting rhizobacteria (PGPR). Soil-borne pathogens occur naturally and colonize aggressively on plant roots, thus promoting growth and productivity and boosting immunity. They also evoke ‘induced systemic resistance’ (ISR) towards soil-borne pathogens in plants along with increasing nutrient uptake. Thus, the use of chemical fertilizers is reduced, and also the accumulation of nitrates and phosphates in agricultural soil is prevented. PGPR influences plants and other species to produce arrays of extracellular molecules for antagonist effects. They develop induced systemic resistance through metabolic pathways involving jasmonic acid (JA) or ethylene. Different strains of PGPR based on their effect can be used to prepare liquid or solid formulations for treating infected plants. Nitrogen-rich organic manures and compost release allelochemicals to reduce soil-borne diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME Jr. Ethylene in plant biology. 2nd ed. New York: Academic Press. 1992.

    Google Scholar 

  • Agrios GN. Department of plant pathology. Amsterdam: University of Florida, Elsevier Academic. 2005; p. 635.

    Chapter  Google Scholar 

  • Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Unv. 2014;26:1–20.

    Article  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia L. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol. 2012;35:1415–4757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bent E. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S and Bent E (eds) Multigenic and Induced Systemic Resistance in Plants. Springer Science, New York. 2006; p. 225–59.

    Google Scholar 

  • Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. Microbiol Ecol. 2009;68:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya P, Jha D. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. J Microbiol Biotechnol. 2012;1–24.

    Google Scholar 

  • Bloemberg GV, Lugtenberg, BJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol. 2001;4:343–50.

    Article  PubMed  CAS  Google Scholar 

  • Blouin-Bankhead S, Landa BB, Lutton E, Weller DM, Mcspadden B. Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. Microbiol Ecol. 2004;49:307–318.

    Article  PubMed  CAS  Google Scholar 

  • Colwell RN. Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hilgardia. 1956;26:223–86.

    Article  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim D-S. Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci, USA. 1995;92:4197–201.

    Article  CAS  Google Scholar 

  • Deadman M. Pythium and phytophthora damping-off and root rot. American Phytopathological Society. 2017; p. 48–50.

    Google Scholar 

  • Deketelaere S, Tyvaert L, Franca SC, Hofte M. Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt. Front Microbiol. 2017;8:1186.

    Google Scholar 

  • Fry W. Phytophthora infestans: the plant and R gene destroyer. Mol Plant Pathol. 2008;9:385–402.

    Google Scholar 

  • Gonzalez M, Pujol M, Metraux JP, Vicente GG, Bolton MD Orlando BH. Tobacco leaf spot and root rot caused by Rhizoctonia solani Kühn. Mol Plant Pathol. 2011;12:209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR. The enhancement of plant growth promotion by free living bacteria. Can J Microbiol. 1995;41:109–17.

    Google Scholar 

  • Glick BR, Bashan Y. Genetic manipulation of plant growth promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv. 1997;15:353–78.

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3:307–19.

    Article  PubMed  CAS  Google Scholar 

  • Honma M, Shimomura T. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agri Biol Chem. 1978;43:1825–31.

    CAS  Google Scholar 

  • Jacobsen CS. Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2,4-D contaminated soil. Plant Soil. 1997;189:139–44.

    Google Scholar 

  • Kannojia P, Choudhary K.K, Srivastava A.K, Singh A.K. PGPR Bioelicitors: Induced Systemic Resistance (ISR) and Proteomic Perspective on Biocontrol. PGPR Amelioration in Sustainable Agriculture-Food Security and Environmental Management, Woodhead Publishing. 2019;67–84. https://doi.org/10.1016/B978-0-12-815879-1.00004-5

    Chapter  Google Scholar 

  • Kravchenko LV, Azarova TS, Dostanko OY. Effect of root exometabolites of wheat with different genome ploidy on growth of Azospirillum brasilense. Microbiol. 1993;62:517–20.

    Google Scholar 

  • Landa BB, Navas-Cortés JA, Hervás A, Jiménez-Díaz RM. Influence of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris on suppression of Fusarium wilt of chickpea by rhizosphere bacteria. Phytopathology. 2001;91:807–16.

    Article  CAS  PubMed  Google Scholar 

  • Landa BB, Navas-Cortés JA, Jiménez-Díaz RM. Influence oof temperature on plant rhizobacteria interactions related to biocontrol potential for suppression of Fusarium wilt of chickpea. Plant Pathol. 2004a;53:341–52.

    Article  Google Scholar 

  • Landa BB, Navas-Cortés JA, Jiménez-Díaz RM. Integrated management of Fusarium wilt 1010 of chickpea with sowing date, host resistance, and biological control. Phytopathology. 2004b;94:946–60.

    Article  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol. 2001;39:461–90.

    Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A. Effects of pesticides on environment. In: Hakeem KR, et al (ed). Plant, soil and microbes; Springer International Publishing Switzerland. 2016;253–69. https://doi.org/10.1007/978-3-319-27455-3_13

    Chapter  Google Scholar 

  • Mishina TE, Zeier J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 2007;50:500–13.

    Article  PubMed  CAS  Google Scholar 

  • Monaim MFA. Induced systemic resistance in tomato plants against Fusarium wilt disease. Int Res J Microbiol. 2012;3(1):14–23.

    Google Scholar 

  • Oerke EC. Crop losses to pests. J Agric Sci. 2006;144:31–43.

    Article  Google Scholar 

  • Pathak R, Shrestha A, Lamichhane J, Gauchan DP. PGPR in biocontrol: mechanisms and roles in disease suppression. Int J Agron Agri R. 2017;11:69–80.

    Google Scholar 

  • Pettitt TR, Parry DW, Polley RW. Effect of temperature on the incidence of nodal foot rot symptoms in winter wheat crops in England and Wales caused by Fusarium culmorum and Microdochium nivale. Agric For Meteorol. 1996;233–42.

    Article  Google Scholar 

  • Picard C, Bosco M. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots. Naturwissenschaften. 2008;95:1–16.

    Article  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, van der Ent S, van Wees SCM. Networking by small-molecule hormones in plant immunity. Natur Chem Biol. 2009;5:308–16.

    Article  PubMed  CAS  Google Scholar 

  • Podile AR, Kishore GK. Plant growth promoting rhizobacteria. In: Gnanamanickam SS (ed). Plant-associated bacteria, Springer, The Netherlands. 2006;195–230. https://doi.org/10.1007/978-1-4020-4538-7_6

  • Pozo MJ, Azcón-Aguilar C. Unraveling mycorrhiza- induced resistance. Curr Opin Plant Biol. 2007;10:393–8.

    Article  PubMed  CAS  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ. Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader. New Phyto. 2001;705–16.

    Article  Google Scholar 

  • Romera FJ, García MJ, Lucena C, Medina AM, Aparicio MA, Ramos J, Alcántara E, Angulo M, Vicente RP. Induced systemic resistance (ISR) and fe deficiency responses in dicot plants. Front Plant Sci. 2019;287:1–17.

    Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD. Systemic acquired resistance. Plant Cell. 1996;8:1808–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Gupta VK, Bharali R, Saikia R. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports. 2018;8:3560.

    Google Scholar 

  • Saikia R, Kumar R, Arora DK, Gogoi DK, Azad P. Pseudomonas aeruginosa inducing rice resistance Rhizoctonia solani: production of salicylic acid and peroxidases. Folia Microbiol. 2006;51(5):375–80.

    Article  CAS  Google Scholar 

  • Saikia R, Kumar R, Singh T, Srivastava AK, Arora DK, Lee MW. Induction of Defense Related Enzymes and Pathogenesis Related Proteins in Pseudomonas fluorescens-Treated Chickpea in Response to Infection by Fusarium oxysporum ciceri. Mycobiol. 2004a;32:47–52.

    Google Scholar 

  • Saikia R, Singh K, Arora DK. Suppression of Fusarium-wilt and charcoal rot of chickpea by Pseudomonas aeruginosa. Indian J Microbiol. 2004b;44:10–14.

    Google Scholar 

  • Saikia R, Singh T, Kumar R, Srivastava J, Srivastava AK, Arora DK. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysoporum. sp. ciceri in chickpea. Microbiol Res. 2003;158:203–13.

    Article  PubMed  CAS  Google Scholar 

  • Saikia R, Srivastava AK, Singh K, Arora DK. Effect of Iron availability on induction systemic resistance to Fusarium wilt of chickpea by Pseudomonas spp. Mycobiology. 2005;33:35–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shafique HA, Sultana V, Haque SE, Athar M. Management of soil-borne diseases of organic vegetables. J plant protection research. 2016;56:221–30.

    Article  CAS  Google Scholar 

  • Shaikh SS, Sayyed RZ. Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. Springer. 2015;337–51.

    Google Scholar 

  • Shine MB, Xiao X, Kachroo P, Kachroo A. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plnt Sci. 2019;279:81–6.

    Article  PubMed  CAS  Google Scholar 

  • Singh RS. Disease management – The practices. Introduction to principles of plant pathology. Oxford & IBH Publishing Co. Pvt. Ltd. New Delhi. 2017.

    Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M. Rhizosphere bacterial signalling, a love parade beneath our feet. Crit Rev Microbiol. 2004;30:205–35.

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC. Regulation of pathogenesis and symptom expression in diseased plants by ethylene. Ethylene: Biochemical, Physiological and Applied Aspects, An International Symposium, Oiryat Anavim, Israel. 1984; p.171–80.

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 1998;36:453–83.

    Google Scholar 

  • Van Loon LC. Systemic induced resistance. In: Slusarenko AJ, Fraser RSS and Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht. 2000; p.521–74.

    Google Scholar 

  • Van Loon LC. Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol. 2007;119:243–54.

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology. 1991;91:728–34.

    Article  Google Scholar 

  • Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci, USA. 2000;97:8711–6.

    Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van’t Westend YAM, Hartog F, Van Loon LC. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact. 1997;10:716–24.

    Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ. Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol. 2008;11:443–8.

    Google Scholar 

  • Veena DR, Priya HR, Khatib RM, Joythi D. Soilborne diseases in Crop Plants and their Management. J Agri and Allied Sc. 2014;2319–9857.

    Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interac. 2004;17:895–908.

    Article  PubMed  CAS  Google Scholar 

  • Vleesschauwer D, Höfte M. Rhizobacteria-induced systemic resistance. Adv Bot Res. 2009;51:223–81.

    Google Scholar 

  • Wei G, Kloepper JW, Tuzun S. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology. 1991;81:1508–12.

    Article  Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin-Bankhead S, Allende-Molar R, Bonsall RF, Mavrodi DM, Thomashow LS. Role of 2,4-diacetylph-loroglucinol-producing fluorescent Pseudomonas spp. in plant defense. Plant Biol. 2007;9:4–20.

    Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol. 2002;40:309–48.

    Google Scholar 

  • Weller DM. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol. 1998;26:379–407.

    Article  Google Scholar 

  • Zaidi A, Ahmad E, Khan S. Role of Phosphate-Solubilizing Microbes in the Management of Plant Diseases. Springer. 2014;225–56.

    Google Scholar 

  • Zehnder G, Kloepper J, Yao C, Wei G. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera, Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol. 1997;90:391–6.

    Article  Google Scholar 

Download references

Acknowledgement

The work is supported by a Network Project, MLP-1005, sponsored by the Council of Scientific and Industrial Research, Ministry of Science and Technology, Government of India, New Delhi. The authors are also thankful to the Director of CSIR-NEIST, Jorhat, Assam, for providing necessary facilities to carry out the work and DBT-BIF Centre, CSIR-NEIST, Jorhat, for providing the computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratul Saikia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gogoi, P. et al. (2020). Plant Growth-Promoting Rhizobacteria in Management of Soil-Borne Fungal Pathogens. In: Singh, B., Singh, G., Kumar, K., Nayak, S., Srinivasa, N. (eds) Management of Fungal Pathogens in Pulses. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-35947-8_1

Download citation

Publish with us

Policies and ethics