Skip to main content

Experimental Progress on Quantum Communication with Quantum Dot Based Devices

  • Chapter
  • First Online:
Quantum Dot Optoelectronic Devices

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 27))

Abstract

Quantum communication is a key branch in the field of quantum information. Quantum dot devices have very promising applications in quantum communication due to the advantage in emitting single photon with good purity and high generation rate. In this chapter, a brief introduction of quantum communication, i.e., quantum key distribution, quantum teleportation, and atom–photon entanglement, is given. The experimental progresses in applying quantum dot devices in these directions are summarized. In each direction, a typical example is introduced in details to show clearly the main principles and technology involved in these experimental progresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonio, A., Bloch, I., Buhrman, H., et al. (2018). The quantum technologies roadmap: A European community view. New Journal of Physics, 20, 080201.

    Article  CAS  Google Scholar 

  2. Guo, G. C., & Ying, M. S. (2019). Preface to special topic on quantum computing. National Science Review, 6, 20.

    Article  Google Scholar 

  3. Raymer, M., & Monroe, C. (2019). The US national quantum initiative. Quantum Science Technology, 4, 020504.

    Article  Google Scholar 

  4. Yamamoto, Y., Sasaki, M., & Takesue, H. (2019). Quantum information science and technology in Japan. Quantum Science Technology, 4, 020502.

    Article  Google Scholar 

  5. Dowling, J., & Milburn, G. (2003). Quantum technology: The second quantum revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361, 1655.

    Article  Google Scholar 

  6. Ladd, T., Jelezko, F., Laflamme, R., et al. (2010). Quantum computers. Nature, 464, 45.

    Article  CAS  Google Scholar 

  7. Shor, P. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 1484.

    Google Scholar 

  8. Deutsch, D., & Jozsa, R. (1992). Rapid solution of problems by quantum computation. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 439, 553–558.

    Google Scholar 

  9. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Physical Review Letters, 78, 212–219.

    Google Scholar 

  10. Krenn, M., Malik, M., Scheidl, T., Ursin, R., & Zeilinger, A. (2016). Quantum communication with photons. In M. Al-Amri, M. El-Gomati, & M. Zubairy (Eds.), Optics in our time. Cham: Springer.

    Google Scholar 

  11. Gisin, N., & Thew, R. (2007). Quantum communication. Nature Photonics, 1, 165–171.

    Article  CAS  Google Scholar 

  12. Yuan, Z. S., Bao, X. H., Lu, C. Y., Zhang, J., Peng, C. Z., & Pan, J. W. (2010). Entangled photons and quantum communication. Physics Reports, 497(1).

    Google Scholar 

  13. Khan, I., Elser, D., Dirmeier, T., Marquardt, C., & Leuchs, G. (2017). Quantum communication with coherent states of light. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 375, 20160235.

    Article  Google Scholar 

  14. Kimble, H. J. (2008). The quantum internet. Nature, 453, 1023.

    Article  CAS  Google Scholar 

  15. Wehner, S., Elkouss, D., & Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362, 303.

    Article  CAS  Google Scholar 

  16. Pant, M., Krovi, H., Towsley, D., et al. (2019). Routing entanglement in the quantum internet. npj Quantum Information, 5, 25.

    Article  Google Scholar 

  17. Dür, W., Lamprecht, R., & Heusler, S. (2017). Towards a quantum internet. European Journal of Physics, 38, 043001.

    Article  Google Scholar 

  18. Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74, 145.

    Article  Google Scholar 

  19. Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computer Systems and Signal Process, 175, 179.

    Google Scholar 

  20. Bennett, C. H., Brassard, G., & Ekert, A. (1992). Quantum cryptography. Scientific American, 267, 50.

    Article  Google Scholar 

  21. Bennett, C. H. (1992). Quantum cryptography using any two nonorthogonal states. Physical Review Letters, 68, 3121.

    Article  CAS  Google Scholar 

  22. Biham, E., & Mor, T. (1997). Security of quantum cryptography against collective attacks. Physical Review Letters, 78, 2256.

    Article  CAS  Google Scholar 

  23. Townsend, P. (1997). Quantum cryptography on multiuser optical fiber networks. Nature (London), 385, 47.

    Article  CAS  Google Scholar 

  24. Bréguet, J., Muller, A., & Gisin, N. (1994). Quantum cryptography with polarized photons in optical fibers: Experimental and practical limits. Journal of Modern Optics, 41, 2405.

    Article  Google Scholar 

  25. Buttler, W. T., Hughes, R. J., Kwiat, P. G., et al. (1998). Practical free-space quantum key distribution over 1 km. Physical Review Letters, 81, 3283.

    Article  CAS  Google Scholar 

  26. Buttler, W. T., Hughes, R. J., Lamoreaux, S. K., et al. (2000). Daylight quantum key distribution over 1.6 km. Physical Review Letters, 84, 5652.

    Article  CAS  Google Scholar 

  27. Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67, 661.

    Article  CAS  Google Scholar 

  28. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., & Zeilinger, A. (2000). Quantum cryptography with entangled photons. Physical Review Letters, 84, 4729–4732.

    Article  CAS  Google Scholar 

  29. Boaron, A., Boso, G., Rusca, D., et al. (2018). Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters, 121, 190502.

    Article  CAS  Google Scholar 

  30. Bennett, C. H., Brassard, G., Crépeau, C., et al. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70, 1895.

    Google Scholar 

  31. Bouwmeester, D., Pan, J. W., Mattle, K., et al. (1997). Experimental quantum teleportation. Nature, 390, 575.

    Article  CAS  Google Scholar 

  32. Ursin, R., Jennewein, T., Aspelmeyer, M., et al. (2004). Quantum teleportation across the Danube. Nature, 430, 849.

    Article  CAS  Google Scholar 

  33. Boschi, D., Branca, S., Martini, D., et al. (1998). Experimental realisation of teleporting an unknown pure quantum state via dual classical and Einstein–Podolski–Rosen channels. Physical Review Letters, 80, 1121–1125.

    Article  CAS  Google Scholar 

  34. Jin, X.-M., Ren, J. G., Yang, B., et al. (2010). Experimental freespace quantum teleportation. Nature Photonics, 4, 376.

    Article  CAS  Google Scholar 

  35. Kim, Y. H., Kulik, S. P., & Shih, Y. (2001). Quantum teleportation of a polarisation state with complete bell state measurement. Physical Review Letters, 86, 1370.

    Article  CAS  Google Scholar 

  36. Yin, J., Ren, J. G., & Lu, H. (2012). Quantum teleportation and entanglement distribution over 100kilometre freespace channels. Nature, 488, 185–188.

    Article  CAS  Google Scholar 

  37. Ma, X. S., Herbst, T., Scheidl, T., et al. (2012). Quantum teleportation over 143 kilometres using active feedforward. Nature, 489, 269.

    Article  CAS  Google Scholar 

  38. Marcikic, I., de Riedmatten, H., Tittel, W., et al. (2003). Long distance teleportation of qubits at telecommunication wavelengths. Nature, 421, 509.

    Google Scholar 

  39. Wang, X. L., Cai, X. D., Su, Z. E., et al. (2015). Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516.

    Article  CAS  Google Scholar 

  40. Furusawa, A., Sørensen, J. L., Braunstein, S. L., et al. (1998). Unconditional quantum teleportation. Science, 282, 706.

    Article  CAS  Google Scholar 

  41. Takei, N., Yonezawa, H., Aoki, T., et al. (2005). High fedelity teleportation beyond the nocloning limit and entanglement swapping for continuous variables. Physical Review Letters, 94, 220502.

    Google Scholar 

  42. Sherson, J. F., Krauter, H., Olsson, R. K., et al. (2006). Quantum teleportation between light and matter. Nature, 443, 557–560.

    Article  CAS  Google Scholar 

  43. Valivarthi, R., Grimau Puigibert, M., Zhou, Q., et al. (2016). Quantum teleportation across a metropolitan-area fibre network. Nature Photonics, 10, 676.

    Article  CAS  Google Scholar 

  44. Sun, Q. C., Mao, Y. L., Chen, S. J., et al. (2016). Quantum teleportation with independent sources and prior entanglement distribution over a network. Nature Photonics, 10, 671.

    Article  CAS  Google Scholar 

  45. Moehring, D. L., Maunz, P., & Olmschenk, S. (2007). Entanglement of single-atom quantum bits at a distance. Nature, 449, 68.

    Article  CAS  Google Scholar 

  46. Stute, A., Casabone, B., Schindler, P., et al. (2012). Tunable ion–photon entanglement in an optical cavity. Nature, 485, 482.

    Article  CAS  Google Scholar 

  47. Volz, J., et al. (2006). Observation of entanglement of a single photon with a trapped atom. Physical Review Letters, 96, 030404.

    Article  CAS  Google Scholar 

  48. Volz, J., Weber, M., Schlenk, D., et al. (2006). Observation of entanglement of a single photon with a trapped atom. Physical Review Letters, 96, 030404.

    Article  CAS  Google Scholar 

  49. Ritter, S., Nölleke, C., Hahn, C., et al. (2012). An elementary quantum network of single atoms in optical cavities. Nature, 484, 195–200.

    Article  CAS  Google Scholar 

  50. Togan, E., Chu, Y., Trifonov, A. S., et al. (2010). Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 466.

    Google Scholar 

  51. De Greve, L. Y., McMahon, P. L., et al. (2012). Quantum–dot spin–photon entanglement via frequency down-conversion to telecom wavelength. Nature, 491, 421.

    Article  CAS  Google Scholar 

  52. Gao, W. B., Fallahi, P., Togan, E., et al. (2012). Observation of entanglement between a quantum dot spin and a single photon. Nature, 491, 426.

    Article  CAS  Google Scholar 

  53. Bock, M., Eich, P., Kucera, S., et al. (2018). High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nature Communications, 9, 1998.

    Article  CAS  Google Scholar 

  54. Matsukevich, D. N., & Kuzmich, A. (2004). Quantum state transfer between matter and light. Science, 306, 663.

    Article  CAS  Google Scholar 

  55. Matsukevich, D. N., Chaneliere, T., Bhattacharya, M., et al. (2005). Entanglement of a photon and a collective atomic excitation. Physical Review Letters, 95, 040405.

    Article  CAS  Google Scholar 

  56. Farrera, P., Heinze, G., de Riedmatten, H., et al. (2018). Entanglement between a photonic time-bin qubit and a collective atomic spin excitation. Physical Review Letters, 120, 100501.

    Article  CAS  Google Scholar 

  57. Li, L., Dudin, Y. O., & Kuzmich, A. (2013). Entanglement between light and an optical atomic excitation. Nature, 498, 466–469.

    Article  CAS  Google Scholar 

  58. de Riedmatten, H., Laurat, J., Chou, C. W., et al. (2006). Direct measurement of decoherence for entanglement between a photon and stored atomic excitation. Physical Review Letters, 97, 113603.

    Article  CAS  Google Scholar 

  59. Chen, S., Chen, Y. A., Zhao, B., et al. (2007). Demonstration of a stable atom-photon entanglement source for quantum repeaters. Physical Review Letters, 99, 180505.

    Article  CAS  Google Scholar 

  60. Lodahl, P. (2018). Quantum-dot based photonic quantum networks. Quantum Science Technology, 3, 013001.

    Article  Google Scholar 

  61. R. L. Rivest, , A. Shamir, and L. M. Adleman, “A method of obtaining digital signatures and public-key cryptosystems,” Communications of the ACM 21, 120 (1978).

    Article  Google Scholar 

  62. Carrasco-Casado, A., Fernandez Marmol, V., & Denisenko, N. (2016). Free-space quantum key distribution. In M. Uysal, C. Capsoni, Z. Ghassemlooy, et al. (Eds.), Optical wireless communications–an emerging technology. Springer International Publishing.

    Google Scholar 

  63. Deutsch, D., Ekert, A., Jozsa, R., et al. (1996). Quantum privacy amplification and the security of quantum cryptography over noisy channels. Physical Review Letters, 77, 2818.

    Article  CAS  Google Scholar 

  64. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al. (2007). Entanglement-based quantum communication over 144 km. Nature Physics, 3, 481.

    Article  CAS  Google Scholar 

  65. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., & Braunstein, S. L. (2015). Advances in quantum teleportation. Nature Photonics, 9, 641.

    Article  CAS  Google Scholar 

  66. Sangouard, N., Simon, C., de Riedmatten, H., & Gisin, N. (2011). Quantum repeaters based on atomic ensembles and linear optics. Reviews of Modern Physics, 83, 33.

    Article  Google Scholar 

  67. Duan, L.-M., Lukin, M. D., Cirac, J. I., & Zoller, P. (2001). Long-distance quantum communication with atomic ensembles and linear optics. Nature (London), 414, 413.

    Article  CAS  Google Scholar 

  68. Briegel, H.-J., Dür, W., Cirac, J. I., & Zoller, P. (1998). Quantum repeaters: The role of imperfect local operations in quantum communication. Physical Review Letters, 81, 5932.

    Article  CAS  Google Scholar 

  69. W. Tittel, , M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems”, Laser & Photonics Reviews 4, 244 (2009).

    Article  CAS  Google Scholar 

  70. Afzelius, M., Simon, C., de Riedmatten, H., & Gisin, N. (2009). Multimode quantum memory based on atomic frequency combs. Physical Review A, 79, 052329.

    Article  CAS  Google Scholar 

  71. Clausen, C., Usmani, I., Bussières, F., et al. (2011). Quantum storage of photonic entanglement in a crystal. Nature, 469, 508.

    Article  CAS  Google Scholar 

  72. Afzelius, M., Gisin, N., & de Riedmatten, H. (2015). Quantum memory for photons. Physics Today, 68, 42.

    Article  CAS  Google Scholar 

  73. Scarani, V., Behmann-Pasquinucci, H., Cerf, N. J., et al. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81, 1301.

    Article  Google Scholar 

  74. Wang, X. B. (2005). Beating the photon-number-splitting attack in practical quantum cryptography. Physical Review Letters, 94, 230503.

    Article  CAS  Google Scholar 

  75. Waks, E., Inoue, K., Santori, C., Fattal, D., Vučković, J., Solomon, G. S., & Yamamoto, Y. (2002). Quantum cryptography with a photon turnstile. Nature, 420, 762.

    Article  CAS  Google Scholar 

  76. Heindel, T., Kessler, C., & Rau, M. (2012). Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New Journal of Physics, 14, 083001.

    Article  Google Scholar 

  77. Intallura, P. M., Ward, M. B., Karimov, O. Z., et al. (2009). Quantum communication using single photons from a semiconductor quantum dot emitting at a telecommunication wavelength. Journal of Optics A: Pure and Applied Optics, 11, 054005.

    Article  CAS  Google Scholar 

  78. Intallura, P. M., Ward, M. B., Karimov, O. Z., et al. (2007). Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm. Applied Physics Letters, 91, 161103.

    Article  CAS  Google Scholar 

  79. Takemoto, K., Nambu, Y., Miyazawa, T., et al. (2010). Transmission experiment of quantum keys over 50 km using high-performance quantum-dot single-photon source at 1.5 μm wavelength. Applied Physics Express, 3, 092802.

    Article  CAS  Google Scholar 

  80. Takemoto, K., Nambu, Y., Miyazawa, T., et al. (2015). Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Scientific Reports, 5, 14383.

    Article  CAS  Google Scholar 

  81. Santori, C., Pelton, M., Solomon, G., Dale, Y., & Yamamoto, Y. (2001). Triggered single photons from a quantum dot. Physical Review Letters, 86, 1502.

    Article  CAS  Google Scholar 

  82. Santori, C., Fattal, D., & Vučković, J. (2002). Indistinguishable photons from a single-photon device. Nature, 419, 594.

    Article  CAS  Google Scholar 

  83. Soujaeff, A., Nishioka, T., Hasegawa, T., et al. (2007). Quantum key distribution at 1550 nm using a pulse heralded single photon source. Optics Express, 15, 726.

    Article  Google Scholar 

  84. Ward, M. B., Farrow, T., See, P., et al. (2007). Electrically driven telecommunication wavelength single-photon source. Applied Physics Letters, 90, 063512.

    Article  CAS  Google Scholar 

  85. Gobby, C., Yuan, Z. L., & Shields, A. J. (2004). Quantum key distribution over 122 km of standard telecom fiber. Applied Physics Letters, 84, 3762.

    Article  CAS  Google Scholar 

  86. Gottesman, D., Lo, H.-K., Lütkenhaus, N., & Preskill, J. (2004). Security of quantum key distribution with imperfect devices. Quantum Information and Computation, 4, 325.

    Google Scholar 

  87. Brassard, G., & Savail, L. (1994). Secret-key reconciliation by public discussion. Lecture Notes in Computer Science, 765, 410.

    Article  Google Scholar 

  88. Yoshino, K., Fujiwara, M., Tanaka, A., et al. (2012). High-speed wavelength-division multiplexing quantum key distribution system. Optics Letters, 37, 223–225.

    Article  Google Scholar 

  89. Tang, Y. L., Yin, H. L., Ma, X. F., et al. (2013). Source attack of decoy-state quantum key distribution using phase information. Physical Review A, 88, 022308.

    Article  CAS  Google Scholar 

  90. Takemoto, K., Takatsu, M., Hirose, S., & Yokoyama, N. (2007). An optical horn structure for single-photon source using quantum dots at telecommunication wavelength. Journal of Applied Physics, 101, 081720.

    Article  CAS  Google Scholar 

  91. Song, H. Z., Takemoto, K., Miyazawa, T., et al. (2013). Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 μm from InAs/InP quantum dots. Optics Letters, 38, 3241.

    Article  CAS  Google Scholar 

  92. Rosenberg, D., Peterson, C., Harrington, J., et al. (2009). Practical long-distance quantum key distribution system using decoy levels. New Journal of Physics, 11, 045009.

    Article  CAS  Google Scholar 

  93. Liu, Y., Chen, T. Y., Wang, J., et al. (2010). Decoy-state quantum key distribution with polarized photons over 200 km. Optics Express, 18(51).

    Google Scholar 

  94. Nilsson, J., Stevenson, R. M., Chan, K. H. A., et al. (2013). Quantum teleportation using a light-emitting diode. Nature Photonics, 7, 311.

    Article  CAS  Google Scholar 

  95. Stevenson, R., Nilsson, J., Bennett, A., et al. (2013). Quantum teleportation of laser-generated photons with an entangled-light-emitting diode. Nature Communications, 4, 2859.

    Article  CAS  Google Scholar 

  96. Varnava, C., Stevenson, R., Nilsson, J., et al. (2016). An entangled-LED-driven quantum relay over 1km. npj Quantum Information, 2, 16006.

    Article  Google Scholar 

  97. Huwer, J., Stevenson, R., Skiba-Szymanska, J., et al. (2017). Quantum dot-based telecommunication-wavelength quantum relay. Physical Review Applied, 8, 024007.

    Article  Google Scholar 

  98. Reindl, M., Huber, D., Schimpf, C., et al. (2018). All-photonic quantum teleportation using on-demand solid-state quantum emitters. Science Advances, 4, 1255.

    Article  CAS  Google Scholar 

  99. Economou, S. (2012). Putting a spin on photon entanglement. Nature, 491, 343.

    Article  CAS  Google Scholar 

  100. Xu, X. D., Wu, Y. W., Sun, B., et al. (2007). Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Physical Review Letters, 99, 097401.

    Article  CAS  Google Scholar 

  101. Flagg, E., Muller, A., Polyakov, S., et al. (2010). Interference of single photons from two separate semiconductor quantum dots. Physical Review Letters, 104, 137401.

    Article  CAS  Google Scholar 

  102. Patel, R., Bennett, A., Farrer, I., et al. (2010). Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photonics, 4, 632.

    Article  CAS  Google Scholar 

  103. Delteil, A., Sun, Z., Gao, W. B., et al. (2016). Generation of heralded entanglement between distant hole spins. Nature Physics, 12, 218.

    Article  CAS  Google Scholar 

  104. De Greve, K., McMahon, P., Yu, L., et al. (2013). Complete tomography of a high-fidelity solid-state entangled spin–photon qubit pair. Nature Communications, 4, 2228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuan, C., Zhou, Q. (2020). Experimental Progress on Quantum Communication with Quantum Dot Based Devices. In: Yu, P., Wang, Z. (eds) Quantum Dot Optoelectronic Devices. Lecture Notes in Nanoscale Science and Technology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-35813-6_5

Download citation

Publish with us

Policies and ethics