Skip to main content

The IPWG Satellite Precipitation Validation Effort

  • Chapter
  • First Online:
Satellite Precipitation Measurement

Abstract

The estimation of precipitation (rainfall and snowfall) across the Earth’s surface is important for both science and user applications, ranging from understanding and improving our knowledge of the global energy and water cycle, to water resources and hydrological modelling, and to societal applications such as water availability and monitoring of waterborne diseases (see Kirschbaum DB, Huffman GJ, Adler RF, Braun S, Garrett K, Jones E, McNally A, Skofronick-Jackson G, Stocker E, Wu H, Zaitchik BF, Bull Am Meteorol Soc 98:1169–1194, 2017). The global mapping of precipitation through conventional means is essentially limited to land areas due to the reliance upon rain (and snow) gauges and/or radar (see Kidd C, Becker A, Huffman GJ, Muller CL, Joe P, Skofronick-Jackson G, Kirschbaum DB, Bull Am Meteorol Soc 98:69–78, 2017a). For truly global precipitation mapping satellite observations must be used. A range of techniques, algorithms and schemes have been developed to exploit these satellite observations and generate quantitative precipitation products, many with (quasi-) global coverage. Alongside these techniques, there is a need for the inter-comparison, verification, and validation of such products in order to quantify their accuracy and performance (and consistency) for both developers and users. The International Precipitation Working Group (IPWG) has supported a long-term effort to inter-compare and validate precipitation products through the exploitation of large-scale regional surface reference data sets. Here, we present the current and future validation efforts of the IPWG together with examples of satellite-surface inter-comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, R. F., Kidd, C., Petty, G., Morrissey, M., & Goodman, H. M. (2001). Inter- comparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3). Bulletin of the American Meteorological Society, 82, 1377–1396. https://doi.org/10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2.

    Article  Google Scholar 

  • Allam, R. E., Holpin, G., Jackson, P., & Liberti, G. L. (1993). Second Algorithm Intercomparison Project (AIP-2), U.K. and Northwest Europe, February–April 1991, Pre-Workshop Report. 439 pp. Available from Satellite Image Applications Group, U.K. Meteorological Office, Bracknell, Berkshire, RG12 2SZ, United Kingdom.

    Google Scholar 

  • Arkin, P. A., & Xie, P. (1994). The global precipitation climatology project: First algorithm intercomparison project. Bulletin of the American Meteorological Society, 75, 401–419. https://doi.org/10.1175/1520-0477(1994)075<0401:TGPCPF>2.0.CO;2.

    Article  Google Scholar 

  • Barrett, E. C., & Bellerby, T. J. (1992). The application of satellite infrared and passive microwave rainfall estimation techniques to Japan – results from the 1st GPCP Algorithm Intercomparison Project. Meteor Magazine, 121, 34–46, ISSN:0026-1149. Available at https://digital.nmla.metoffice.gov.uk/digitalFile_ec4ad38c-2f61-4d24-b71b-ca885d78c32a/. Last accessed 29 Nov 2018.

  • Barrett, E. C., Dodge, J., Goodman, M., Janowiak, J., Kidd, C., & Smith, E. A. (1994). The first WetNet precipitation intercomparison project. Remote Sensing Reviews, 11, 49–60. https://doi.org/10.1080/02757259409532258.

    Article  Google Scholar 

  • Ebert, E. E. (1996). Results of the 3rd Algorithm Intercomparison Project (AIP-3) of the Global Precipitation Climatology Project (GPCP). Revision 1. Bureau of Meteorology Research Centre, 199 pp. Available at https://catalogue.nla.gov.au/Record/1350958. Last accessed 19 Oct 2018.

  • Ebert, E. E., & Gallus, W. A. (2009). Toward better understanding of the contiguous rain area (CRA) method for spatial forecast verification. Weather and Forecasting, 24, 1401–1415. https://doi.org/10.1175/2009WAF2222252.1.

    Article  Google Scholar 

  • Ebert, E. E., Manton, M. J., Arkin, P. A., Allam, R. J., Holpin, G. E., & Gruber, A. (1996). Results from the GPCP algorithm intercomparison programme. Bulletin of the American Meteorological Society, 77, 2875–2887. https://doi.org/10.1175/1520-0477(1996)077<2875:RFTGAI>2.0.CO;2.

    Article  Google Scholar 

  • Ebert, E. E., Janowiak, J. E., & Kidd, C. (2007). Comparison of near real time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society, 88, 47–64. https://doi.org/10.1175/BAMS-88-1-47.

    Article  Google Scholar 

  • Hong, Y., Hsu, K.-L., Sorooshian, S., & Gao, X. (2004). Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. Journal of Applied Meteorology, 43, 1834–1853. https://doi.org/10.1175/JAM2173.1.

    Article  Google Scholar 

  • Houze, R. A., Jr., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W., Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R., Tanelli, S., Mace, G. G., Poellot, M. R., Lettenmaier, D. P., Zagrodnik, J. P., Rowe, A. K., DeHart, J. C., Madaus, L. E., Barnes, H. C., & Chandrasekar, V. (2017). The Olympic Mountains Experiment (OLYMPEX). Bulletin of the American Meteorological Society, 98, 2167–2188. https://doi.org/10.1175/BAMS-D-16-0182.1.

    Article  Google Scholar 

  • Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., & Stocker, E. F. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55. https://doi.org/10.1175/JHM560.1.

    Article  Google Scholar 

  • Kidd, C., Ferraro, R. R., & Levizzani, V. (2010). The Fourth International Precipitation Working Group workshop. Bulletin of the American Meteorological Society, 91(8), 1095–1099. https://doi.org/10.1175/2009BAMS2871.1.

    Article  Google Scholar 

  • Kidd, C., Bauer, P., Turk, F. J., Huffman, G. J., Joyce, R., Hsu, K.-L., & Braithwaite, D. (2012). Inter-comparison of high-resolution precipitation products over Northwest Europe. Journal of Hydrometeorology, 13, 67–83. https://doi.org/10.1175/JHM-D-11-042.

    Article  Google Scholar 

  • Kidd, C., Dawkins, E., & Huffman, G. J. (2013). Comparison of precipitation derived from the ECMWF operational forecast model and satellite precipitation datasets. Journal of Hydrometeorology, 14, 1463–1482. https://doi.org/10.1175/JHM-D-12-0182.1.

    Article  Google Scholar 

  • Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., & Kirschbaum, D. B. (2017a). So, how much of the Earth’s surface is covered by rain gauges? Bulletin of the American Meteorological Society, 98, 69–78. https://doi.org/10.1175/BAMS-D-14-00283.1.

    Article  Google Scholar 

  • Kidd, C., Panegrossi, G., Sanò, P., Ringerud, S., Casella, D., & Stocker, E. (2017b). Inter-comparison of precipitation products over Western Europe from the EUMETSAT H-SAF and NASA PPS. In Proceedings of EUMESAT 2017 Conference, Rome, Italy. [Available at https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_3212307.html, last accessed 24 July 2018].

  • Kidd, C., Tan, J., Kirstetter, P.-E., & Petersen, W. A. (2018). Validation of the version 05 level 2 precipitation products from the GPM Core Observatory and constellation satellite sensors. Quarterly Journal of the Royal Meteorological Society, 144(S1), 313–328. https://doi.org/10.1002/qj.3175.

    Article  Google Scholar 

  • Kirschbaum, D. B., Huffman, G. J., Adler, R. F., Braun, S., Garrett, K., Jones, E., McNally, A., Skofronick-Jackson, G., Stocker, E., Wu, H., & Zaitchik, B. F. (2017). NASA’s remotely-sensed precipitation: A reservoir for applications users. Bulletin of the American Meteorological Society, 98, 1169–1194. https://doi.org/10.1175/BAMS-D-15-00296.1.

    Article  Google Scholar 

  • Kubota, T., Ushio, T., Shige, S., Kida, S., Kachi, M., & Okamoto, K. (2009). Verification of high resolution satellite-based rainfall estimates around Japan using gauge-calibrated ground radar dataset. Journal of the Meteorological Society of Japan, 87A, 203–222. https://doi.org/10.2151/jmsj.87A.203.

    Article  Google Scholar 

  • Kulie, M. S., Milani, L., Wood, N. B., Tushaus, S. A., Bennartz, R., & L’Ecuyer, T. S. (2016). A shallow cumuliform snowfall census using spaceborne radar. Journal of Hydrometeorology, 17, 1261–1279. https://doi.org/10.1175/JHM-D-15-0123.1.

    Article  Google Scholar 

  • Levizzani, V., Kidd, C., Aonashi, K., Bennartz, R., Ferraro, R. R., Huffman, G. J., Roca, R., Turk, F. J., & Wang, N.-Y. (2018). The activities of the International Precipitation Working Group. Quarterly Journal of the Royal Meteorological Society, 144(S1), 3–15. https://doi.org/10.1002/qj.3214.

    Article  Google Scholar 

  • Maggioni, V., & Massari, C. (2018). On the performance of satellite precipitation products in riverine flood modeling: A review. Journal of Hydrology, 558, 214–224. https://doi.org/10.1016/j.jhydrol.2018.01.039.

    Article  Google Scholar 

  • Maggioni, V., Meyers, P. C., & Robinson, M. D. (2016). A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. Journal of Hydrometeorolgy, 17, 1101–1117. https://doi.org/10.1175/JHM-D-15-0190.1.

    Article  Google Scholar 

  • Makihara, Y. (2007). Steps towards decreasing heavy rain disasters by short-range precipitation and land-slide forecast using weather radar accompanied by improvement of meteorological operational activities (in Japanese). Tenki, 54, 21–33.

    Google Scholar 

  • Makihara, Y., Uekiyo, N., Tabata, A., & Abe, Y. (1996). Accuracy of radar-AMeDAS precipitation. IEICE Transactions on Communications, 79, 751–762. [Available at https://search.ieice.org/bin/summary.php?id=e79-b_6_751, last accessed 29 Nov 2018].

  • Mega, T., & Shige, S. (2016). Improvements of rain/no-rain classification methods for microwave radiometer over coasts by dynamic surface-type classification. Journal of Atmospheric and Oceanic Technology, 33, 1257–1270. https://doi.org/10.1175/JTECH-D-15-0127.1.

    Article  Google Scholar 

  • Morrissey, M. L., & Greene, J. S. (1991). The Pacific Atoll Raingage data set. Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Contrib. No. 91-242, 445 pp.

    Google Scholar 

  • Murakami, M., Matsuo, T., Mizuno, H., & Yamada, Y. (1994). Mesoscale and microscale structures of snow clouds over the Sea of Japan Part I: Evolution of microphysical structures in short-lived convective snow clouds. Journal of the Meteorological Society of Japan, 72, 671–694. https://doi.org/10.2151/jmsj1965.72.5_671.

    Article  Google Scholar 

  • Sapiano, M. R. P., Janowiak, J. E., Shi, W., Higgins, R. W., & Silva, V. B. (2010). Regional evaluation through independent precipitation measurements: USA. In M. Gebremichael & F. Hossain (Eds.), Satellite rainfall applications for surface hydrology (pp. 169–191). New York: Springer. https://doi.org/10.1107/978-90-481-2915-7_10.

    Chapter  Google Scholar 

  • Scofield, R. A., & Kuligowski, R. J. (2003). Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Monthly Weather Review, 18, 1037–1051. https://doi.org/10.1175/1520-0434(2003)018<1037:SAOOOS>2.0.CO;2.

    Article  Google Scholar 

  • Shige, S., Kida, S., Ashiwake, H., Kubota, T., & Aonashi, K. (2013). Improvement of TMI rain retrievals in mountainous areas. Journal of Applied Meteorology and Climatology, 52, 242–254. https://doi.org/10.1175/JAMC-D-12-074.1.

    Article  Google Scholar 

  • Shige, S., Yamamoto, M. K., & Taniguchi, A. (2014). Improvement of TMI rain retrieval over the Indian subcontinent. In V. Lakshmi (Ed.), Remote sensing of the terrestrial water cycle (Geophysical monograph series) (Vol. 206, pp. 27–42). Washington, DC: American Geophysical Union. https://doi.org/10.1002/9781118872086.ch2.

    Chapter  Google Scholar 

  • Skofronick-Jackson, G., Hudak, D., Petersen, W. A., Nesbitt, S. W., Chandrasekar, V., Durden, S., Gleicher, K. J., Huang, G.-J., Joe, P., Kollias, P., Reed, K. A., Schwaller, M. R., Stewart, R., Tanelli, S., Tokay, A., Wang, J. R., & Wolde, M. (2015). Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For measurement sake let it snow. Bulletin of the American Meteorological Society, 96, 1719–1741. https://doi.org/10.1175/BAMS-D-13-00262.1.

    Article  Google Scholar 

  • Smith, E. A., Lamm, J. E., Adler, R., Alishouse, J., Aonashi, K., Barrett, E., Bauer, P., Berg, W., Chang, A., Ferraro, R., Ferriday, J., Goodman, S., Grody, N., Kidd, C., Kniveton, D., Kummerow, C., Liu, G., Marzano, F., Mugnai, A., Olson, W., Petty, G., Shibata, A., Spencer, R., Wentz, F., Wilheit, T., & Zipser, E. (1998). Results of WetNet PIP-2 project. Journal of the Atmospheric Sciences, 55, 1483–1536. https://doi.org/10.1175/1520-0469(1998)055<1483:ROWPP>2.0.CO;2.

    Article  Google Scholar 

  • Sohn, B. J., Ryu, G.-H., Song, H.-J., & Ou, M.-L. (2013). Characteristic features of warm-type rain producing heavy rainfall over the Korean peninsula inferred from TRMM measurements. Monthly Weather Review, 141, 3873–3888. https://doi.org/10.1175/MWR-D-13-00075.1.

    Article  Google Scholar 

  • Taniguchi, A., Shige, S., Yamamoto, M. K., Mega, T., Kida, S., Kubota, T., Kachi, M., Ushio, T., & Aonashi, K. (2013). Improvement of high-resolution satellite rainfall product for typhoon Morakot (2009) over Taiwan. Journal of Hydrometeorology, 14, 1859–1871. https://doi.org/10.1175/JHM-D-13-047.1.

    Article  Google Scholar 

  • Turk, F. J., & Bauer, P. (2006). The International Precipitation Working Group and its role in the improvement of quantitative precipitation measurements. Bulletin of the American Meteorological Society, 87, 643–647. https://doi.org/10.1175/BAMS-87-5-643.

    Article  Google Scholar 

  • Woodruff, S. D., Slutz, R. J., Jenne, R. L., & Steurer, P. M. (1987). A comprehensive ocean–atmosphere data set. Bulletin of the American Meteorological Society, 68, 1239–1250. https://doi.org/10.1175/1520-0477(1987)068,1239:ACOADS.2.0.CO;2.

    Article  Google Scholar 

  • Yamamoto, M. K., & Shige, S. (2015). Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers. Atmospheric Research, 163, 36–47. https://doi.org/10.1016/j.atmosres.2014.07.024.

    Article  Google Scholar 

  • Yamamoto, M. K., Shige, S., Yu, C.-K., & Cheng, L.-W. (2017). Further improvement of the heavy orographic rainfall retrievals in the GSMaP algorithm for microwave radiometers. Journal of Applied Meteorology and Climatology, 56, 2607–2619. https://doi.org/10.1175/JAMC-D-16-0332.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Kidd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kidd, C. et al. (2020). The IPWG Satellite Precipitation Validation Effort. In: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Nakamura, K., Turk, F. (eds) Satellite Precipitation Measurement. Advances in Global Change Research, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-35798-6_1

Download citation

Publish with us

Policies and ethics