Skip to main content

Bioactive Polysaccharides from Microalgae

  • Living reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Microalgae represent an untapped resource of mixed polysaccharides with potential applications in biotechnology, therapeutics, pharmaceuticals, and drug delivery. There are presently ~160,000 described species of algae and approximately 80% of these are classified as microalgae, including the cyanobacteria. Numerous reviews and research articles can be found on the structural characterization and bioactivity of a variety of polysaccharides derived from seaweeds and kelps, i.e., macroalgae, and many of these compounds are widely used in industry and clinical applications. By comparison, there are relatively few studies on the bioactivity of polysaccharides from microalgae or their potential applications. This chapter will provide an overview of structural and bioactive polysaccharides and related case studies for major groups of microalgae, including the Cyanophyta (cyanobacteria), Chlorophyta (green algae), Rhodophyta (red algae), and selected golden microalgae in the Chromista, e.g., Bacillariophyta, Haptophyta, and Ochrophyta. Many groups of microalgae produce bioactive polysaccharides, including extracellular polymeric substances (EPS) and sulfated polysaccharides (SPS) that have demonstrated antibacterial, antiviral, antioxidant, and anticancer potential. Microalgal glycans are composed predominantly of pentose, hexose, and deoxyhexose monosaccharide subunits with various glycosidic linkages and degrees of branching. Their bioactivity can often be attributed to the monosaccharide composition, content of uronic acids, molecular weight fraction, and/or degree of modification, e.g., sulfation, amination, acylation, phosphorylation, and methylation. While current studies have been limited to a few species, there are many more microalgae to be explored, providing immense opportunities for metabolite discovery in the field of microalgal polysaccharides and natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agustini NWS. Potency of endo-exopolysaccharide from Porphyridium cruentum (S.F.Gray) Nägeli as antioxidant (DPPH) and biological toxicity (BSLT). KnE Life Sci. 2017;3(4):147–56. https://doi.org/10.18502/kls.v3i4.699.

    Article  Google Scholar 

  • Arad SM, Rapoport L, Moshkovich A, Moppes DV, Karpasas M, Golan R, Golan Y. Superior biolubricant from a species of red microalga. Langmuir. 2006;22(17):7313–7. https://doi.org/10.1021/la060600x.

    Article  CAS  PubMed  Google Scholar 

  • Ascencio F, Gama NL, De Phillippis R, Ho B. Effectiveness of Cyanothece spp. and Cyanospira capsulata extracellular polysaccharides as antiadhesive agents for blocking attachment of Heliobactor pylori to human gastric cells. Folia Microbiol. 2004;41:64–70.

    Article  Google Scholar 

  • Bae SY, Yim JH, Lee HK, Pyo S. Activation of murine peritoneal macrophages by sulfated exopolysaccharide from marine microalga Gyrodinium impudicum (strain KG03): involvement of the NF-κB and JNK pathway. Int Immunopharmacol. 2006;6(3):473–84.

    Article  CAS  Google Scholar 

  • Bergman B. Glyoxylate induced changes in the carbon and nitrogen metabolism of the cyanobacterium Anabaena cylindrica. Plant Physiol. 1986;80(3):698–701.

    Article  CAS  Google Scholar 

  • Bernaerts TM, Kyomugasho C, Looveren NV, Gheysen L, Foubert I, Hendrickx ME, Loey AMV. Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum. Carbohydr Polym. 2018;195:542–50. https://doi.org/10.1016/j.carbpol.2018.05.001.

    Article  CAS  PubMed  Google Scholar 

  • Bertocchi C, Navarini L, Cesàro A. Polysaccharides from cyanobacteria. Carbohydr Polym. 1990;12:127–53.

    Article  CAS  Google Scholar 

  • Brüll LP, Huang Z, Thomas-Oates JE, Paulsen BS, Cohen EH, Michaelsen TE. Studies of polysaccharides from three edible species of Nostoc (Cyanobacteria) with different colony morphologies: structural characterization and effect on the compliment system of polysaccharides from Nostoc commune. J Phycol. 2000;36:871–81.

    Article  Google Scholar 

  • Capek P, Matulová M, Combourieu B. The extracellular proteoglycan produced by Rhodella grisea. Int J Biol Macromol. 2008;43(4):390–3. https://doi.org/10.1016/j.ijbiomac.2008.07.015.

    Article  CAS  PubMed  Google Scholar 

  • Cardemil L, Wolk CP. The polysaccharides from heterocysts and spore envelopes of a blue-green alga. J Biol Chem. 1979;254:736–41.

    Article  CAS  Google Scholar 

  • Chen B, You W, Huang J, et al. Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World J Microbiol Biotechnol. 2010;26:833–40. https://doi.org/10.1007/s11274-009-0240-y.

  • Chen YX, Liu XY, Xiao Z, Huang YF, Liu B. Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations. Int J Biol Macromol. 2016;91:505–9.

    Article  CAS  Google Scholar 

  • Cheng YS, Labavitch JM, VanderGheynst JS. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella. Lett Appl Microbiol. 2015;60(1):1–7.

    Article  Google Scholar 

  • De Philippis R, Ena A, Paperi R, Sili C, Vincenzini M. Assessment of the potential of Nostoc strains from the Pasteur Culture Collection for the production of polysaccharides of applied interest. J Appl Phycol. 2000;12:401–7.

    Article  Google Scholar 

  • Dvir I, Chayoth R, Sod-Moriah U, Shany S, Nyska A, Stark AH, … Arad SM. Soluble polysaccharide and biomass of red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats. Br J Nutr. 2000;84(4):469–76. https://doi.org/10.1017/s000711450000177x.

  • Estevez JM, Leonardi PI, Alberghina JS. Cell wall carbohydrate epitopes in the green alga Oedogonium bharuchae F. minor (Oedogoniales, Chlorophyta) 1. J Phycol. 2008;44(5):1257–68.

    Article  CAS  Google Scholar 

  • Evans LV, Callow ME, Percival E, Fareed V. Studies on the synthesis and composition of extracellular mucilage in the unicellular red alga Rhodella. J Cell Sci. 1974;16:1–21.

    Article  CAS  Google Scholar 

  • Fabregas J, Garcıa D, Fernandez-Alonso M, Rocha AI, Gómez-Puertas P, Escribano JM, Otero A, Coll JM. In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antivir Res. 1999;44(1):67–73.

    Article  CAS  Google Scholar 

  • Friedman O, Dubinsky Z, Arad SM. Effect of light intensity on growth and polysaccharide production in red and blue-green rhodophyta unicells. Bioresour Technol. 1991;38(2–3):105–10. https://doi.org/10.1016/0960-8524(91)90139-b.

    Article  CAS  Google Scholar 

  • Garbacki N, Gloaguen V, Damas J, Hoffmann L, Tits M, Angenot L. Inhibition of croton oil-induced oedema in mice ear skin by capsular polysaccharides from Cyanobacteria. Naunyn Schmiedeberg’s Arch Pharmacol. 2000;361:460–4.

    Article  CAS  Google Scholar 

  • Garozzo D, Impallomeni G, Spina E, Sturiale L. The structure of the exocellular polysaccharide from the cyanobacterium Cyanospria capsulata. Carbohydr Res. 1998;307:113–24.

    Article  CAS  Google Scholar 

  • Ge H, Zhang J, Zhou X, Xia L, Hu C. Effects of light intensity on components and topographical structures of extracellular polymeric substances from Microcoleus vaginatus (Cyanophyceae). Phycologia. 2014;53:167–73.

    Article  CAS  Google Scholar 

  • Geresh S, Arad S. The extracellular polysaccharides of the red microalgae: chemistry and rheology. Bioresour Technol. 1991;38(2–3):195–201. https://doi.org/10.1016/0960-8524(91)90154-c.

    Article  CAS  Google Scholar 

  • Geresh S, Mamontov A, Weinstein J. Sulfation of extracellular polysaccharides of red microalgae: preparation, characterization and properties. J Biochem Biophys Methods. 2002;50(2–3):179–87. https://doi.org/10.1016/s0165-022x(01)00185-3.

    Article  CAS  PubMed  Google Scholar 

  • Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja JM. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res. 2003;17(6):665–70.

    Article  CAS  Google Scholar 

  • Hayashi K, Hayashi T, Morita N, Kojima I. An extract from Spirulina platensis is a selective inhibitor of herpes simplex virus type 1 penetration into HeLa cells. Phytother Res. 1993;7:76–80.

    Article  Google Scholar 

  • Hayashi K, Hayashi T, Jojima I. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retrovir. 1996;12:1463–71.

    Article  CAS  Google Scholar 

  • He X, Dai J, Wu Q. Identification of sporopollenin as the outer layer of cell wall in microalga Chlorella protothecoides. Front Microbiol. 2016;7:1047. https://doi.org/10.3389/fmicb.2016.01047.

  • Heaney-Kieras J, Chapman DJ. Structural studies on the extracellular polysaccharide of the red alga, Porphyridium cruentum. Carbohydr Res. 1976;52(1):169–77. https://doi.org/10.1016/s0008-6215(00)85957-1.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Corona A, Nieves I, Meckes M, Chamorro G, Barron BL. Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antivir Res. 2002;56:279–85.

    Article  Google Scholar 

  • Huleihel M, Ishanu V, Tal J, Arad SM. Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo. J Biochem Biophys Methods. 2002;50(2–3):189–200. https://doi.org/10.1016/s0165-022x(01)00186-5.

    Article  Google Scholar 

  • Imam SH, Buchanan MJ, Shin HC, Snell WJ. The Chlamydomonas cell wall: characterization of the wall framework. J Cell Biol. 1985;101(4):1599–607.

    Article  CAS  Google Scholar 

  • Kanekiyo K, Lee J-B, Hayashi K, Takenaka H, Hayakawa Y, Endo S, Hayashi T. Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J Nat Prod. 2005;68:1037–41.

    Article  CAS  Google Scholar 

  • Kaplan D, Christiaen D, Arad SM. Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol. 1987;53(12):2953–6.

    Article  CAS  Google Scholar 

  • Karsten U, West JA, Zuccarello GC, Engbrodt R, Yokoyama A, Hara Y, Brodie J. Low molecular weight carbohydrates of the bangiophycidae (Rhodophyta)1. J Phycol. 2003;39(3):584–9. https://doi.org/10.1046/j.1529-8817.2003.02192.x.

    Article  CAS  Google Scholar 

  • Keidan M, Friedlander M, (Malis) Arad S. Effect of Brefeldin A on cell-wall polysaccharide production in the red microalga Porphyridium sp. (Rhodophyta) through its effect on the Golgi apparatus. J Appl Phycol. 2009;21:707. https://doi.org/10.1007/s10811-009-9406-0.

    Article  CAS  Google Scholar 

  • Lewin RA. Extracellular polysaccharides of green algae. Can J Microbiol. 1956;2(7):665–72. https://doi.org/10.1139/m56-079.

    Article  CAS  Google Scholar 

  • Li S, Shabtai Y, Arad S. Production and composition of the sulphated cell wall polysaccharide of Porphyridium (Rhodophyta) as affected by CO2 concentration. Phycologia. 2000;39(4):332–6. https://doi.org/10.2216/i0031-8884-39-4-332.1.

    Article  Google Scholar 

  • Liao H-F, Wu T-J, Tai J-L, Chi M-C, Lin L-L. Immunomodulatory potential of the polysaccharide-rich extract from the edible cyanobacterium Nostoc commune. Med Sci. 2015;3:112–23.

    Google Scholar 

  • Mader J, Gallo A, Schommartz T, Handke W, Nagel C-H, Günther P, Brune W, Reich K. Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis. J Allergy Clin Immunol. 2016;137:197–203.

    Article  CAS  Google Scholar 

  • Mase T, Yamauchi M, Kato Y, Esaki H, Isshiki S. Hyaluronidase-inhibiting acidic polysaccharide isolated from Porphyridium purpureum. J Sugiyama Jogakuen Univ Nat Sci. 2013;44:105–13.

    Google Scholar 

  • Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T, Kato T, Saiki I. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from blue-green alga, Spirulina platensis. Clin Exp Metastasis. 1998;16:541–50.

    Article  CAS  Google Scholar 

  • Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry. 1999;52:639–47.

    Article  CAS  Google Scholar 

  • Nomoto K, Yokokura T, Satoh H, Mutai M. Antitumor activity of Chlorella extract, PCM-4, by oral administration. Gan To Kagaku Ryoho Cancer Chemother. 1983;10(3):781.

    CAS  Google Scholar 

  • Panoff J-M, Priem B, Morvan H, Joset F. Sulphated exopolysaccharides produced by two unicellular strains of cyanobacteria, Synechocystis PCC 6803 and 6714. Arch Microbiol. 1988;150:558–63.

    Article  CAS  Google Scholar 

  • Park JK, Kim ZH, Lee CG, Synytsya A, Jo HS, Kim SO, Park JW, Park YI. Characterization and immunostimulating activity of a water-soluble polysaccharide isolated from Haematococcus lacustris. Biotechnol Bioprocess Eng. 2011;16(6):1090–8.

    Article  CAS  Google Scholar 

  • Pugh N, Ross SA, El Sohly HN, El Sohly MA, Pasco DS. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med. 2001;67(08):737–42.

    Article  CAS  Google Scholar 

  • Radonic A, Thulke S, Achenbach J, Kurth A, Vreemann A. Anionic polysaccharides from phototrophic microorganisms exhibit antiviral activities to vaccinia virus. J Antivir Antiretrovir. 2010;02(04). https://doi.org/10.4172/jaa.1000023.

  • Rajasekar P, Palanisamy S, Anjali R, Vinosha M, Elakkiya M, Marudhupandi T, Tabarsa M, You S, Prabhu NM. Isolation and structural characterization of sulfated polysaccharide from Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial activity and Zebrafish growth and reproductive performance. Int J Biol Macromol. 2019;141:809–21.

    Article  CAS  Google Scholar 

  • Ramus J, Groves ST. Incorporation of sulfate into the capsular polysaccharide of the red alga Porphyridium. J Cell Biol. 1972;54(2):399–407. https://doi.org/10.1083/jcb.54.2.399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo MFDJ, de Morais AMMB, de Morais RMSC. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs. 2014;93:479–86. https://doi.org/10.1016/j.lfs.2013.08.002.

    Article  CAS  Google Scholar 

  • Reshef V, Mizrachi E, Martezki T, Silberstein C, Loya S, Hizi A, Carmeli S. New acylated sulfoglycolipids and digalactolipids and related known glycolipids from cyanobacteria with a potential to inhibit the reverse transcriptase of HIV-1. J Nat Prod. 1997;60:1251–60.

    Article  CAS  Google Scholar 

  • Rodrigues MA, Bon EP. Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Res. 2011;2011. Article ID 405603, 5 pages.

    Google Scholar 

  • Sadovskaya I, Souissi A, Souissi S, Grard T, Lencel P, Greene CM, Duin S, Dmitrenok PS, Chizhov AO, Shashkov AS, et al. Chemical structure and biological activity of a highly branched (1→3,1→6)-β-D-glucan from Isochrysis galbana. Carbohydr Polym. 2014;111:139–48.

    Article  CAS  Google Scholar 

  • Singh S, Das S. Screening, production, optimization and characterization of cyanobacterial polysaccharide. World J Microbiol Biotechnol. 2011;27:1971–80.

    Article  CAS  Google Scholar 

  • Sun L, Wang L, Zhou Y. Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr Polym. 2012;87(2):1206–10. https://doi.org/10.1016/j.carbpol.2011.08.097.

    Article  CAS  Google Scholar 

  • Sun L, Wang L, Li J, Liu H. Characterization and antioxidant activities of degraded polysaccharides from two marine Chrysophyta. Food Chem. 2014a;160:1–7.

    Article  CAS  Google Scholar 

  • Sun Y, Wang H, Guo G, Pu Y, Yan B. The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydr Polym. 2014b;113:22–31.

    Article  CAS  Google Scholar 

  • Talyshinsky MM, Souprun YY, Huleihel MM. Anti-viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell Int. 2002;2:8. https://doi.org/10.1186/1475-2867-2-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tannin-Spitz T, Bergman M, van-Moppes D, et al. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J Appl Phycol. 2005;17:215–22. https://doi.org/10.1007/s10811-005-0679-.

    Article  CAS  Google Scholar 

  • Wang L, Wang X, Wu H, Liu R. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Mar Drugs. 2014;12(9):4984–5020.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schonna R. Manning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Manning, S.R., Perri, K.A., Blackwell, K. (2021). Bioactive Polysaccharides from Microalgae. In: Oliveira, J., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-35734-4_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35734-4_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35734-4

  • Online ISBN: 978-3-030-35734-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics