Skip to main content

Isolation of Microbial Polysaccharides

  • Living reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Microbial polysaccharides comprise of cellular, structural, and exopolysaccharides (EPS). Microbial EPS are a structurally very diverse class of polymers. A number of these molecules have found applications in different fields that extend from medicine, food, and cosmetics, on the one hand, to construction, drilling, and chemical industry, on the other hand. In view of this, identification of new microbial strains that produce maximum amount of novel polysaccharide has been a major area in the recent past. Observing the fact that nearly all microbes have the genetic and metabolic machinery for the production of polysaccharides under specific conditions, there is a need for high throughput screening techniques helpful for identifying novel variants of microbial EPS with properties superior to the already described ones, or even totally new ones. For the optimum cost-effective use of EPS in various applications, not only we should have EPS producing microbial strains but the process optimization for the isolation, extraction, and purification is also very important so as to get purified EPS with its native structure. A number of physical and chemical methods available for this purpose are discussed in this chapter. No single method is suitable for different microbial EPS, and one has to select and optimize a suitable method for a particular EPS/microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed Z, Wang Y, Anjum N, et al. Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir – part II. Food Hydrocoll. 2013;30:343–50.

    Article  CAS  Google Scholar 

  • Azeredo J, Oliveira R. A new method for precipitating bacterial exopolysaccharides. Biotechnol Tech. 1996;10:341–4.

    Article  CAS  Google Scholar 

  • Behare PV, Singh R, Nagpal R, et al. Exopolysaccharides producing Lactobacillus fermentum strain for enhancing rheological and sensory attributes of low-fat dahi. J Food Sci Technol. 2013;50:1228–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronicacids. Anal Biochem. 1973;54:484–9.

    Article  CAS  PubMed  Google Scholar 

  • Caruso C, Rizzo C, Mangano S, Poli A, Di Donato P, Nicolaus B, Di Marco G, Michaud L, Giudice AL. Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater. Environ Sci Pollut Res. 2018;25:4667–77. https://doi.org/10.1007/s11356-017-0851-z.

    Article  CAS  Google Scholar 

  • Caruso C, Rizzo C, Mangano S, Poli A, Di Donato P, Nicolaus B, Finore I, Di Marco G, Michaud L, Giudice AL. Isolation, characterization and optimization of EPSs produced by a cold adapted Marinobacter isolate from Antarctic seawater. Antarct Sci. 2019;31:69–79.

    Article  Google Scholar 

  • Ciszek-Lenda M, Nowak B, Srottek M, et al. Further studies on immunomodulatory effects of exopolysaccharide isolated from Lactobacillus rhamnosus KL37C. Cent Eur J Immunol. 2013;38:289–98.

    Article  CAS  Google Scholar 

  • Dave SR, Upadyay KH, Vaishnav, AM, et al. Exopolysaccharides from marine bacteria: production, recovery and applications. Environ Sustain. 2020. https://doi.org/10.1007/s42398-020-00101-5.

  • Dierksen KP, Sandine WE, Trempy JE. Expression of ropy and mucoid phenotypes in Lactococcus lactis. J Dairy Sci. 1997;80:1528–36.

    Article  CAS  PubMed  Google Scholar 

  • Donnarumma G, Molinaro A, Cimini D, et al. Lactobacillus rispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens. BMC Microbiol. 2014;14:137.

    Google Scholar 

  • Donot F, Fontana A, Baccou J, et al. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym. 2012;87:951–62.

    Article  CAS  Google Scholar 

  • Duenas M, Irastorza A, Fernandez K, et al. Heterofermentative Lactobacilli causing ropiness in Basque country ciders. J Food Prot. 1995;58:76–80.

    Article  CAS  PubMed  Google Scholar 

  • Evans NA, Hoyne PA, Stone BA. Characteristics and specificity of the interaction of a fluorochrome from aniline blue (Sirofluor) with polysaccharides. Carbohydr Polym. 1984;4:215–30.

    Article  CAS  Google Scholar 

  • Filali Mouhim R, Cornet JF, Fontaine T, et al. Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotechnol Lett. 1993;15:567–72.

    Article  CAS  Google Scholar 

  • Folkenberg DM, Dejmek P, Skriver A. Sensory and rheological screening of exopolysaccharide producing strains of bacterial yogurt cultures. Int Dairy J. 2006;16:111–8.

    Article  CAS  Google Scholar 

  • Fontana C, Li S, Yang Z, et al. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydr Res. 2015;402:87–94.

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Reis MA. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol. 2011;29:388–98.

    Article  CAS  PubMed  Google Scholar 

  • Frolund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996;30:1749–58.

    Article  Google Scholar 

  • Garai-Ibabe G, Areizaga J, Aznar R, et al. Screening and selection of 2-branched (1,3)-β-d-glucan producing lactic acid bacteria and exopolysaccharide characterization. J Agric Food Chem. 2010;58:6149–56.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ochoa F, Casas JA, Mohedano AF. Precipitation of xanthan gum. Sep Sci Technol. 1993;28:1303–13.

    Google Scholar 

  • Górska-FrÄ…czek S, Sandström C, Kenne L, et al. The structure and immunoreactivity of exopolysaccharide isolated from Lactobacillus johnsonii strain 151. Carbohydr Res. 2013;378:148–53.

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Pan D, Sun Y, et al. Antioxidant activity of phosphorylated exopolysaccharide produced by Lactococcus lactis ssp. lactis. Carbohydr Polym. 2013;97:849–54.

    Article  CAS  PubMed  Google Scholar 

  • Ismail B, Nampoothiri KM. Molecular characterization of an exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510 and its efficacy to improve the texture of starchy food. J Food Sci Technol. 2014;51:4012–8.

    Article  CAS  PubMed  Google Scholar 

  • Jindal N, Khattar JIS. Microbial polysaccharides in food industry. In: Grumezescu AM, Hoban AM, editors. Handbook of food bioengineering, Vol 20: biopolymers for food design. Academic Press; 2018. p. 95–123. https://doi.org/10.1016/B978-0-12-811449-0.00004-9.

    Chapter  Google Scholar 

  • Jindal N, Singh DP, Khattar JIS. Kinetics and physico-chemical characterization of exopolysaccharides produced by Oscillatoria formosa. World J Microbiol Biotechnol. 2011;27:2139–46.

    Article  CAS  Google Scholar 

  • Khattar JIS, Singh DP, Jindal N, et al. Isolation and characterization of exopolysaccharides produced by the cyanobacterium Limnothrix redekei PUPCCC 116. Appl Biochem Biotechnol. 2010;162:1327–38.

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kong I, Kwon K, et al. Exopolysaccharides produced by Z. ramigera mutants and analysis of structural change by solution properties. Biotechnol Lett. 1994;16:789–94. https://doi.org/10.1007/BF00133955.

    Article  Google Scholar 

  • Kothari D, Das D, Patel S, et al. Dextran and food application. In: Ramawat KG, Meérillon JM, editors. Polysaccharides. Springer International Publishing; 2015. p. 1–16.

    Google Scholar 

  • Kreyenschulte D, Krull R, Margaritis A. Recent advances in microbial biopolymer production and purification. Crit Rev Biotechnol. 2014;34:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Kumar AS, Mody K. Microbial exopolysaccharides: variety and potential applications. In: Rehm BHM, editor. Microbial production of biopolymers and polymer precursors: applications and perspectives. Norfolk: Caister Academic Press; 2009. p. 229–54.

    Google Scholar 

  • Kumar AS, Mody K, Jha B. Bacterial exopolysaccharides–a perception. J Basic Microbiol. 2007;47:103–17.

    Article  CAS  PubMed  Google Scholar 

  • Le Du Alicia G, Agata Z, Corinne S, et al. Purification of the exopolysaccharide produced by Alteromonas infernus: identification of endotoxins and effective process to remove them. Appl Microbiol Biotechnol. 2017;101:6597–606.

    Article  CAS  Google Scholar 

  • Leroy F, De Vuyst L. Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. J Dairy Sci. 2016;99:3229–38.

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Jin MM, Meng J. Exopolysaccharide from Lactobacillus plantarum LP6: antioxidation and the effect on oxidative stress. Carbohydr Polym. 2013;98:1147–52.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li W, Chen X, et al. Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. Food Sci Technol (Campinas). 2014;57:477–85.

    CAS  Google Scholar 

  • Ma JJ, Yin RC. Primary study on extracellular polysaccharide producing bacteria in different environments. Anhui Daxue Xuebao Ziran Kexueban. 2011;35:94–100.

    CAS  Google Scholar 

  • Marcial GJ, Messing B, Menchicchi FM, et al. Effects of polysaccharide isolated from Streptococcus thermophilus CRL1190 on human gastric epithelial cells. Int J Biol Macromol. 2013;62:217–24.

    Article  CAS  PubMed  Google Scholar 

  • Mende S, Peter M, Bartels K, et al. Addition of purified exopolysaccharide isolates from S. thermophilus to milk and their impact on the rheology of acid gels. Food Hydrocoll. 2013;32:178–85.

    Article  CAS  Google Scholar 

  • Miao M, Ma Y, Jiang B, et al. Structural investigation of a neutral extracellular glucan from Lactobacillus reuteri SK24.003. Carbohydr Polym. 2014;106:384–92.

    Article  CAS  PubMed  Google Scholar 

  • Mojica K, Elsey D, Cooney MJ. Quantitative analysis of biofilm EPS uronic acid content. J Microbiol Methods. 2007;71:61–5.

    Article  CAS  PubMed  Google Scholar 

  • Morin A. Screening of polysaccharide producing microorganisms, factors influencing the production and recovery of microbial polysaccharides. In: Polysaccharides-structural diversity and functional versatility. New York: Marcel Dekker Inc.; 1998. p. 275–96.

    Google Scholar 

  • Nielsen PH, Jahn A. Extraction of EPS. In: Wingender J, Neu TR, Flemming HC, editors. Microbial extracellular polymeric substances; characterization, extraction and function. Berlin: Springer; 1999. p. 49–72.

    Chapter  Google Scholar 

  • Notararigo S, Nácher-Vázquez M, Ibarburu I, Werning ML, de Palencia PF, Dueñas MT, Aznar R, López P, Prieto A. Comparative analysis of production and purification of homo and hetero-polysaccharides produced by lactic acid bacteria. Carbohydr Polym. 2013;93:57–64.

    Article  CAS  PubMed  Google Scholar 

  • Ogaji IJ, Nep EI, Audu-Peter JD. Advances in natural polymers as pharmaceutical excipients. Pharm Anal Acta. 2012;3:146.

    Article  CAS  Google Scholar 

  • Park JH, Ahn HJ, Kim SG, et al. Dextran-like exopolysaccharide- producing Leuconostoc and Weissella from Kimchi andits ingredients. Food Sci Biotechnol. 2013;22:1047–53.

    Article  CAS  Google Scholar 

  • Phillips GO, Williams PA. Preface. In: Phillips GO, Williams PA, editors. Handbook of hydrocolloids. Great Abington/Cambridge: Woodhead Publishing; 2000. p. 1–22.

    Google Scholar 

  • Pier GB, Sidberry HF, Zolyomi S, et al. Isolation and characterization of a high-molecular-weight polysaccharide from the slime of Pseudomonas aeruginosa. Infect Immun. 1978;22:908–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poli A, Anzelmo G, Nicolaus B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs. 2010;8:1779–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricciardi A, Parente E, Clementi F. A simple method for the screening of lactic acid bacteria for the production of exopolysaccharides in liquid media. Biotechnol Tech. 1997;11:271–5.

    Article  CAS  Google Scholar 

  • Rimada PS, Abraham AG. Comparative study of different methodologies to determine the exopolysaccharide produced by kefir grains in milk and whey. Lait. 2003;83:79–87.

    Article  CAS  Google Scholar 

  • Ruas-Madiedo P, de los Reyes-Gavilán CG. Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci. 2005;88:843–56.

    Article  CAS  PubMed  Google Scholar 

  • Rühmann B, Schmid J, Sieber V. Fast carbohydrate analysis via liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection in 96-well format. J Chromatogr A. 2014;1350:44–50.

    Article  PubMed  CAS  Google Scholar 

  • Rühmann, B, Schmid J, Sieber V. Methods to identify unexplored diversity of microbial exopolysaccharides. Front Microbiol. 2015a;6. https://doi.org/10.3389/fmicb.2015.00565.

  • Rühmann B, Schmid J, Sieber V. High throughput exopolysaccharide screening platform: from strain cultivation to monosaccharide composition and carbohydrate fingerprinting in one day. Carbohydr Polym. 2015b;122:212–20.

    Article  PubMed  CAS  Google Scholar 

  • Schmid J, Mueller-Hagen D, Sieber V, et al. Nucleic and protein extraction methods for fungal exopolysaccharide producers. In: Gupta VK, Tuohy MG, Ayyachamy M, et al., editors. Laboratory protocols in fungal biology: current methods in fungal biology. New York: Springer; 2013. p. 427–34.

    Chapter  Google Scholar 

  • Shang N, Xua R, Li P. Structure characterization of an exopolysaccharide produced by Bifidobacterium animalis RH. Carbohydr Polym. 2013;91:128–34.

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Wu Z, Zhang H, et al. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr Polym. 2014;107:51–6.

    Article  CAS  PubMed  Google Scholar 

  • Smith IH, Pace GW. Recovery of microbial polysaccharides. J Chem Technol Biotechnol. 1982;32:119–29.

    Article  CAS  Google Scholar 

  • Stredansky M, Conti E, Bertocchi C, et al. Fed-batch production and simple isolation of succinoglycan from Agrobacterium tumefaciens. Biotechnol Tech. 1999;13:7–10.

    Article  CAS  Google Scholar 

  • Sutherland IW. Biotechnology of microbial exopolysaccharides. Cambridge: Cambridge University Press; 1990. p. 122–32.

    Book  Google Scholar 

  • Sutherland IW. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 1998;16:41–6.

    Article  CAS  PubMed  Google Scholar 

  • Swennen K, Courtin CM, Van Der Bruggen B, et al. Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohydr Polym. 2005;62:283–92.

    Article  CAS  Google Scholar 

  • Tuinier R, Zoon P, Olieman C, et al. Isolation and physical characterization of an eocellular polysaccharide. Biopolymers. 1999;49:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg DJC, Smits A, Pot B, et al. Isolation, screening and identification of lactic-acid bacteria from traditional food fermentation processes and culture collections. Food Biotechnol. 1993;7:189–205.

    Article  Google Scholar 

  • Vedamuthu ER, Neville JM. Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris MS. Appl Environ Microbiol. 1986;51:677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2:307–44.

    Article  CAS  PubMed Central  Google Scholar 

  • Wang K, Li W, Rui X, et al. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol. 2014;63:133–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhaob X, Yang Y, et al. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol. 2015;74:119–26.

    Article  CAS  PubMed  Google Scholar 

  • Wood PJ, Fulcher RG. Interaction of some dyes with cereal β-glucans. Cereal Chem. 1978;55:952–66.

    CAS  Google Scholar 

  • Yilmaz MT, Dertli E, Toker OS, et al. Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: an optimization study based on fermentation kinetics. J Dairy Sci. 2015;98:1604–24.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu C, Li D, et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol. 2013;54:270–5.

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Cui N, Qu F, et al. Novel nano-particulated exopolysaccharide produced by Klebsiella sp. PHRC1. 001. Carbohydr Polym. 2017;171:252–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jindal, N., Khattar, J.S., Singh, D.P. (2021). Isolation of Microbial Polysaccharides. In: Oliveira, J., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-35734-4_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35734-4_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35734-4

  • Online ISBN: 978-3-030-35734-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics