Skip to main content

Manifold Learning for Data-Driven Dynamical System Analysis

  • Chapter
  • First Online:
The Koopman Operator in Systems and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 484))

  • 4819 Accesses

Abstract

High-dimensional signals generated by dynamical systems arise in many fields of science. For example, many biomedical signals can be modeled by a few latent physiologically related variables measured indirectly through a large set of noisy sensors. In such applications, a notable challenge in analyzing and processing the observed data is that the generating system is typically unknown. In this chapter, this problem is addressed through geometric analysis by applying manifold learning. Specifically, we show how using manifold learning in a purely data-driven manner, with minimal prior knowledge or model assumptions, we can both discover the hidden state, dynamics, and observation function, and also attain a compact linear description of the full system. The main assumption is that the accessible high- dimensional data (the observations of the system) lie on an underlying nonlinear manifold of lower dimensions. Furthermore, when applying manifold learning to time series, critical information is typically overlooked. Time series are processed as data sets of samples, ignoring their embodied dynamics and temporal order. We address the challenge of incorporating the time dependencies into manifold learning and present a purely data-driven scheme. First, an intrinsic representation is derived without prior knowledge of the system by applying diffusion maps. Second, we show that even for highly nonlinear systems, the dynamics of the constructed representation is approximately linear, and present accordingly two filtering frameworks, one based on a linear observer and another based on the Kalman filter. These filtering methods enable us to directly incorporate the inherent dynamics and time dependencies between consecutive system observations into the diffusion maps coordinates. We show that this approach is analogous to Koopman spectral analysis, since applying diffusion maps to the given measurements generates a parametrization of the state space in a known analytic form of the dynamics with a linear drift. We demonstrate the benefits of the approach on simulated data and on real recordings from various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berry, T., Giannakis, D., Harlim, J.: Nonparametric forecasting of low-dimensional dynamical systems. Phys. Rev. E 91(3), 032,915 (2015)

    Google Scholar 

  2. Berry, T., Harlim, J.: Nonparametric uncertainty quantification for stochastic gradient flows. SIAM/ASA J. Uncertain. Quantif. 3(1), 484–508 (2015)

    Article  MathSciNet  Google Scholar 

  3. Berry, T., Sauer, T.: Adaptive ensemble Kalman filtering of non-linear systems. Tellus A: Dyn. Meteorol. Oceanogr. 65(1), 20,331 (2013)

    Article  Google Scholar 

  4. Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism a. Chaos: Interdiscip. J. Nonlinear Sci. 22(4), 047,510 (2012)

    Article  MathSciNet  Google Scholar 

  5. Coifman, R., Kevrekidis, I., Lafon, S., Maggioni, M., Nadler, B.: Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems. Multiscale Model. Simul. 7(2), 842–864 (2008)

    Article  MathSciNet  Google Scholar 

  6. Coifman, R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006)

    Article  MathSciNet  Google Scholar 

  7. Črnjarić-Žic, N., Maćešić, S., Mezić, I.: Koopman operator spectrum for random dynamical system (2017). arXiv:1711.03146

  8. Deisenroth, M.P., Turner, R.D., Huber, M.F., Hanebeck, U.D., Rasmussen, C.E.: Robust filtering and smoothing with gaussian processes. IEEE Trans. Autom. Control 57(7), 1865–1871 (2012)

    Article  MathSciNet  Google Scholar 

  9. Giannakis, D.: Data-driven spectral decomposition and forecasting of ergodic dynamical systems. Appl. Comput. Harmonic Anal. (2017)

    Google Scholar 

  10. Kalman, R.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 34–45 (1960)

    MathSciNet  Google Scholar 

  11. Lohmiller, W., Slotine, J.: On contraction analysis for non-linear systems. Automatica 34(6), 683–696 (1998)

    Article  MathSciNet  Google Scholar 

  12. Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1), 309–325 (2005)

    Article  MathSciNet  Google Scholar 

  13. Nadler, B., Lafon, S., Coifman, R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In: Neural Information Processing Systems (NIPS), vol. 18 (2005)

    Google Scholar 

  14. Nadler, B., Lafon, S., Coifman, R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl. Comput. Harmon. Anal. 21, 113–127 (2006)

    Article  MathSciNet  Google Scholar 

  15. Shnitzer, T., Talmon, R., Slotine, J.J.: Diffusion maps Kalman filter (2017). arXiv:1711.09598

  16. Shnitzer, T., Talmon, R., Slotine, J.J.E.: Manifold learning with contracting observers for data-driven time-series analysis. IEEE Trans. Signal Process. 65(4), 904–918 (2017)

    Article  MathSciNet  Google Scholar 

  17. Singer, A., Coifman, R.: Non-linear independent component analysis with diffusion maps. Appl. Comput. Harmon. Anal. 25, 226–239 (2008)

    Article  MathSciNet  Google Scholar 

  18. Sinha, S., Bowen, H., Vaidya, U.: On robust computation of Koopman operator and prediction in random dynamical systems (2018). arXiv:1803.08562

  19. Surana, A., Banaszuk, A.: Linear observer synthesis for nonlinear systems using Koopman operator framework. IFAC-PapersOnLine 49(18), 716–723 (2016)

    Article  Google Scholar 

  20. Takeishi, N., Kawahara, Y., Yairi, T.: Learning Koopman invariant subspaces for dynamic mode decomposition. In: Advances in Neural Information Processing Systems, pp. 1130–1140 (2017)

    Google Scholar 

  21. Takeishi, N., Kawahara, Y., Yairi, T.: Subspace dynamic mode decomposition for stochastic Koopman analysis. Phys. Rev. E 96(3), 033,310 (2017)

    Google Scholar 

  22. Takens, F.: Dynamical systems and turbulence (detecting strange attractors in fluid turbulence) (1981)

    Google Scholar 

  23. Wang, Y., Brubaker, M.A., Chaib-draa, B., Urtasun, R.: Bayesian filtering with online Gaussian process latent variable models. UAI pp. 849–857 (2014)

    Google Scholar 

  24. Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25(6), 1307–1346 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tal Shnitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shnitzer, T., Talmon, R., Slotine, JJ. (2020). Manifold Learning for Data-Driven Dynamical System Analysis. In: Mauroy, A., Mezić, I., Susuki, Y. (eds) The Koopman Operator in Systems and Control. Lecture Notes in Control and Information Sciences, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-030-35713-9_14

Download citation

Publish with us

Policies and ethics