Skip to main content

Vertical Cavity Surface Emitting Laser Diodes for Communication, Sensing, and Integration

  • Chapter
  • First Online:
Semiconductor Nanophotonics

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 194))

  • 1947 Accesses

Abstract

I review my research group's work to date on the design, processing, performance, and key physics of state-of-the-art vertical cavity surface emitting lasers (VCSELs) for modern and emerging applications in optical data communication systems, as low to moderate power optical sources for sensing systems, and as very small to low optical power light sources for photonic-electronic integrated circuits. Via reduced complexity epitaxial designs that potentially lead to lower manufacturing and life cycle costs and via novel device geometries and processing methods we demonstrate record small-signal modulation bandwidth, the highest for all VCSELs at any wavelength to date, and record combinations of bandwidth and optical output power which is vital for emerging free space data communication, tracking, and sensing systems. We further demonstrate arrays of VCSELs of various sizes for a plethora of emerging applications supporting the Internet of Things and all manner of energy sustainable interactive gadgets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Haghighi, P. Moser, J.A. Lott, Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays. IEEE J. Sel. Topics Quant. Electr. 25(6), 1700615, 1–15 (2019). https://doi.org/10.1109/jstqe.2019.2922843

    Article  Google Scholar 

  2. I. Melngailis, Longitudinal injection plasma laser of InSb. Appl. Phys. Lett. 6, 59–60 (1965). https://doi.org/10.1063/1.1754164

    Article  ADS  Google Scholar 

  3. R. Dingle, W. Wiegmann, C.H. Henry, Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs–AlxGa1−xAs heterostructures. Phys. Rev. Lett. 33(14), 827–830 (1974). https://doi.org/10.1103/PhysRevLett.33.827

    Article  ADS  Google Scholar 

  4. J.P. van der Ziel, R. Dingle, R.C. Miller, W. Wiegmann, W.A. Nordland Jr., Laser oscillation from quantum states in very thin GaAs–Al0.2Ga0.8As multilayer structures. Appl. Phys. Lett. 26(8), 463–465 (1975). https://doi.org/10.1063/1.88211

    Article  ADS  Google Scholar 

  5. J.P. van der Ziel, M. Ilegems, Multilayer GaAs–A10.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy. Appl. Opt. 14, 2627–2630 (1975). https://doi.org/10.1364/AO.14.002627

    Article  ADS  Google Scholar 

  6. D.R. Scifres, R.D. Burnham, W. Streifer, Highly collimated laser beams from electrically pumped SH GaAs/GaAlAs distributed—feedback lasers. J. Appl. Phys. 26(48), 48–50 (1975). https://doi.org/10.1063/1.88068

    Article  Google Scholar 

  7. D. Scifres, R.D. Burnham, Distributed feedback diode laser. US Patent US 3983509, 28 Sep 1976

    Google Scholar 

  8. H. Soda, K. Iga, C. Kitahara, Y. Suematsu, GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys. 18, 2329–2330 (1979). https://doi.org/10.1143/JJAP.18.2329

    Article  ADS  Google Scholar 

  9. M. Ogura, T. Hata, N.J. Kawai, T. Yao, GaAs/AlxGa1−x As multilayer reflector for surface emitting laser diode. Jpn. J. Appl. Phys. 22, L112–L114 (1983). https://doi.org/10.1143/JJAP.22.L112

    Article  ADS  Google Scholar 

  10. M. Ogura, T. Hata, T. Yao, Distributed feed back surface emitting laser diode with multilayered heterostructure. Jpn. J. Appl. Phys. 23, L512–L514 (1984). https://doi.org/10.1143/JJAP.23.L512

    Article  Google Scholar 

  11. M. Ogura, T. Yao, Surface emitting laser diode with AlxGa1−xAs/GaAs multilayered heterostructure. J. Vac. Sci. Technol., B 3, 784–787 (1985). https://doi.org/10.1116/1.583099

    Article  Google Scholar 

  12. K. Iga, S. Kinoshita, F. Koyama, Microcavity GaAlAs/GaAs surface-emitting laser with lth = 6 mA. Electron. Lett. 23, 134–136 (1987). https://doi.org/10.1049/el:19870095

    Article  ADS  Google Scholar 

  13. T. Sakaguchi, F. Koyama, K. Iga, Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector. Electron. Lett. 24, 928–929 (1988). https://doi.org/10.1049/el:19880632

    Article  ADS  Google Scholar 

  14. P.L. Gourley, T.J. Drummond, Visible, room temperature, surface emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarterwave high reflectors and AlGaAs/GaAs multiple. Appl. Phys. Lett. 50, 1225–1227 (1987). https://doi.org/10.1063/1.97916

    Article  ADS  Google Scholar 

  15. J.L. Jewell, A. Scherer, S.L. McCall, Y.H. Lee, S. Walker, J.P. Harbison, L.T. Florez, Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electron. Lett. 25, 1123–1134 (1989). https://doi.org/10.1049/el:19890754

    Article  Google Scholar 

  16. Y.H. Lee, J.L. Jewell, A. Scherer, S.L. McCall, J.P. Harbison, L.T. Florez, Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes. Electron. Lett. 25, 1377–1378 (1989). https://doi.org/10.1049/el:19890921

    Article  ADS  Google Scholar 

  17. Y.H. Lee, B. Tell, K. Brown-Goebeler, J.L. Jewell, J.V. Hove, Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85 μm. Electron. Lett. 26, 710–711 (1990). https://doi.org/10.1049/el:19900463

    Article  ADS  Google Scholar 

  18. R.S. Geels, S.W. Corzine, J.W. Scott, D.B. Young, L.A. Coldren, Low threshold planarized vertical-cavity surface-emitting lasers. IEEE Photonics Technol. Lett. 2, 234–236 (1990). https://doi.org/10.1109/68.53246

    Article  ADS  Google Scholar 

  19. J.M. Dallesasse, N. Holonyak Jr., A.R. Sugg, T.A. Richard, N. El-Zein, Hydrolyzation oxidation of AlxGa1−xAs–AlAs–GaAs quantum well heterostructures and superlattices. Appl. Phys. Lett. 57, 2844–2846 (1990). https://doi.org/10.1063/1.103759

    Article  ADS  Google Scholar 

  20. D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers, Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl. Phys. Lett. 65, 97–99 (1994). https://doi.org/10.1063/1.113087

    Article  ADS  Google Scholar 

  21. K.D. Choquette, K.M. Geib, C.I.H. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes, R. Hull, Advances in selective wet oxidation of AlGaAs alloys. IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997). https://doi.org/10.1109/2944.640645

    Article  ADS  Google Scholar 

  22. M. Dallesasse, N. Holonyak Jr., Oxidation of Al-bearing III–V materials: a review of key progress. J. Appl. Phys. 113, 051101 (2013). https://doi.org/10.1063/1.4769968

    Article  ADS  Google Scholar 

  23. Yole Développement 2019, online: http://www.yole.fr/2014-galery-LED.aspx#I00093392

  24. N. Haghighi, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, J.A. Lott, Simplicity VCSELs, in Proceedings of SPIE 10552, Vertical-Cavity Surface-Emitting Lasers XXII, 105520 N (2018)

    Google Scholar 

  25. N. Haghighi, G. Larisch, M. Zorn, J.A. Lott, High bandwidth versus high optical output power in 980 nm VCSELs. HL 36.7, German Physical Society Spring Meeting, Berlin, 11–16 Mar 2018

    Google Scholar 

  26. P. Moser, H. Schmeckebier, M. Gębski, P. Śpiewak, R. Rosales, M. Wasiak, J.A. Lott, Intracavity and extracavity-contacted 980-nm oxide-confined VCSELs for optical interconnects and integration, Invited, in Proceedings SPIE 101220 J, Vertical-Cavity Surface-Emitting Lasers XXI (2017). https://doi.org/10.1117/12.2256177

  27. M. Marciniak, M. Gębski, M. Dems, E. Haglund, A. Larsson, M. Riaziat, J.A. Lott, T. Czyszanowski, Optimal parameters of monolithic high-contrast grating mirrors. Opt. Lett. 41(15), 3495–3498 (01 Aug 2016). https://doi.org/10.1364/ol.41.003495

    Article  ADS  Google Scholar 

  28. J.A. Lott, P. Moser, M. Gębski, M. Dems, M. Wasiak, T. Czyszanowski, Energy-efficient VCSELs for integrated optoelectronic and photonic systems, Invited, in Proceedings ICP-2016, Kuching, Sarawak (Borneo, Malaysia, 2016), pp. 14–16. https://doi.org/10.1109/ICP.2016.7510052

  29. M. Gębski, M. Dems, J.A. Lott, T. Czyszanowski, Monolithic subwavelength high-index-contrast grating VCSEL. IEEE Photonics Technol. Lett. 27, 1953–1956 (2015). https://doi.org/10.1109/LPT.2015.2447932

    Article  ADS  Google Scholar 

  30. M. Gębski, J.A. Lott, T. Czyszanowski, Electrically-injected VCSEL with a single-layer monolithic subwavelength high index contrast grating mirror. Opt. Express 27(3), 7139–7146 (04 Feb 2019). https://doi.org/10.1364/oe.27.007139

    Article  ADS  Google Scholar 

  31. R. Rosales, M. Zorn, J.A. Lott, 30-GHz bandwidth with directly current modulated 980-nm oxide-aperture VCSELs. IEEE Photonics Technol. Lett. 29(23), 2107–2110 (2017). https://doi.org/10.1109/LPT.2017.2764626

    Article  ADS  Google Scholar 

  32. N. Haghighi, G. Larisch, M. Gębski, M. Marciniak, J.A. Lott, Bandwidth versus oxide aperture diameter for 980 nm Simplicity VCSELs, in Proceedings of 7th Workshop on Physics and Technology of Semiconductor Lasers, Krakow, Poland, 15–18 Oct 2017

    Google Scholar 

  33. N. Haghighi, G. Larisch, R. Rosales, M. Zorn, J.A. Lott, 35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs, WD4, in Proceedings of IEEE International Semiconductor Laser Conference, Santa Fe, NM, USA, 16–19 Sep 2018

    Google Scholar 

  34. M. Noble, J.A. Lott, J.P. Loehr, Quasi-exact optical analysis of oxide-apertured microcavity VCSELs using vector finite elements. IEEE J. Quantum Electron. 34(12), 2327–2339 (1998). https://doi.org/10.1109/3.736102

    Article  ADS  Google Scholar 

  35. T. Höhne, L. Zschiedrich, N. Haghighi, J.A. Lott, S. Burger, Numerical computation of resonance modes and of constant-flux modes in VCSELs, in Proceedings of SPIE Photonics Europe 106821-65, Strasbourg, France, 22–26 Apr 2018

    Google Scholar 

  36. J.A. Lott, N. Haghighi, G. Larisch, M. Zorn, High bandwidth simplicity VCSELs, invited, paper 6, in Proceedings ICP-2018 (Langkawi, Malaysia, 2018), pp. 09–11. https://doi.org/10.1109/icp.2018.8533202

  37. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656, July–Oct 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  Google Scholar 

  38. N. Haghighi, G. Larisch, R. Rosales, J.A. Lott, 23 GHz bandwidth and 25 mW peak optical output power with 980 nm oxide aperture VCSELs, MC2.4, in Proceedings of IEEE Photonics Conference, Reston, VA, USA, 30 Sep–04 Oct 2018

    Google Scholar 

  39. J.A. Lott, R. Rosales, G. Larisch, N. Haghighi, 25–30 Gbps error-free data transmission with large oxide aperture diameter 980 nm VCSELs, W3A.3, in Proceedings Optical Fiber Conference (OFC), San Diego, CA, 03–07 Mar 2019

    Google Scholar 

  40. N. Haghighi, P. Moser, J.A. Lott, Bandwidth and optical output power of VCSELs and VCSEL arrays, in Proceedings of SPIE 10938, Vertical-Cavity Surface-Emitting Lasers XXIII, Photonics West 2019, San Francisco, CA, 02–07 Feb 2019. https://doi.org/10.1117/12.2508720

  41. N. Haghighi, J. Lavrencik, S.E. Ralph, J.A. Lott, 55 Gbps error free data transmission with 980 nm VCSELs across 100 m of multiple-mode optical fiber, TuE3-3, in Proceedings of 24th OptoElectronic and Communications Conference (OECC), Fukuoka, Japan, 07–11 July 2019

    Google Scholar 

  42. N. Haghighi, P. Moser, J.A. Lott, 40 Gbps with electrically parallel triple and septuple 980 nm VCSEL arrays. IEEE/OSA Journal of Lightwave Technology (24 Dec 2019). https://doi.org/10.1109/JLT.2019.2961931

Download references

Acknowledgements

This work is supported by the German Research Foundation via the Collaborative Research Center 787. I gratefully acknowledge the brilliant work of my research group members Nasibeh Haghighi, Dr. Marcin Gębski, and Dr. Philip Moser, and our collaborations with Prof. Tomasz Czyszanowski (Lodz University of Technology, Poland) and Dr. Martin Zorn (JENOPTIK Optical Systems GmbH, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Lott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lott, J.A. (2020). Vertical Cavity Surface Emitting Laser Diodes for Communication, Sensing, and Integration. In: Kneissl, M., Knorr, A., Reitzenstein, S., Hoffmann, A. (eds) Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-35656-9_10

Download citation

Publish with us

Policies and ethics