Skip to main content

How the Demands of a Variable Environment Give Rise to Statistical Learning

  • Chapter
  • First Online:
Language and Concept Acquisition from Infancy Through Childhood

Abstract

Language inherently requires learners to process variability in the input, as no two utterances, sentences, or speakers sound identical. Statistical learning, the ability to identify structure in the input by detecting regular patterns, is a potential mechanism that may help infants and adults cope with, and benefit from, the variability in linguistic input. In this chapter, I provide an overview of statistical learning phenomena, including identifying units (such as words) from the co-occurrence of sounds and discovering category membership from the frequency and variability of exemplars in the input. While there are many different statistical learning tasks, I propose that they share many commonalities that can be explained by viewing statistical learning as an emergent property of the way that information is stored, accessed, and integrated in memory. This perspective makes novel predictions about the process of language development and how it is related to more domain-general cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbot-Smith, K., & Tomasello, M. (2006). Exemplar-learning and schematization in a usage-based account of syntactic acquisition. The Linguistic Review, 23(3), 275–290.

    Google Scholar 

  • Allen, J. S., & Miller, J. L. (1999). Effects of syllable-initial voicing and speaking rate on the temporal characteristics of monosyllabic words. The Journal of the Acoustical Society of America, 106(4), 2031–2039.

    PubMed  Google Scholar 

  • Allen, J. S., Miller, J. L., & DeSteno, D. (2003). Individual talker differences in voice-onset-time. The Journal of the Acoustical Society of America, 113(1), 544–552.

    PubMed  Google Scholar 

  • Aslin, R. N., & Newport, E. L. (2014). Distributional language learning: Mechanisms and models of category formation. Language Learning, 64(s2), 86–105.

    PubMed  PubMed Central  Google Scholar 

  • Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability statistics by 8-month-old infants. Psychological Science, 9(4), 321–324.

    Google Scholar 

  • Baker, C., Olson, C. R., & Berhmann, M. (2004). Role of attention and perceptual grouping in visual statistical learning. Psychological Science, 15, 460–466.

    Google Scholar 

  • Bakker, A., Kirwan, C. B., Miller, M., & Stark, C. E. (2008). Pattern separation in the human hippocampal CA3 and dentate gyrus. Science, 319(5870), 1640–1642.

    PubMed  PubMed Central  Google Scholar 

  • Baldwin, D., Andersson, A., Saffran, J., & Meyer, M. (2008). Segmenting dynamic human action via statistical structure. Cognition, 106(3), 1382–1407.

    PubMed  Google Scholar 

  • Batterink, L. J. (2017). Rapid statistical learning supporting word extraction from continuous speech. Psychological Science, 28(7), 921–928.

    PubMed  PubMed Central  Google Scholar 

  • Best, C. T., & Strange, W. (1992). Effects of phonological and phonetic factors on cross-language perception of approximants. Journal of Phonetics, 20(3), 305–330.

    Google Scholar 

  • Biber, D. (1999). A register perspective on grammar and discourse: Variability in the form and use of English complement clauses. Discourse Studies, 1(2), 131–150.

    Google Scholar 

  • Bornstein, A. M., & Daw, N. D. (2012). Dissociating hippocampal and striatal contributions to sequential prediction learning. European Journal of Neuroscience, 35(7), 1011–1023.

    PubMed  Google Scholar 

  • Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory, 2(3), 113–124.

    Google Scholar 

  • Clayards, M., Tanenhaus, M. K., Aslin, R. N., & Jacobs, R. A. (2008). Perception of speech reflects optimal use of probabilistic speech cues. Cognition, 108(3), 804–809.

    PubMed  PubMed Central  Google Scholar 

  • Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D., Fragniere, A., Tyers, P., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937), 210–213.

    PubMed  PubMed Central  Google Scholar 

  • Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical learning of tactile, visual, and auditory sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 24–39.

    PubMed  Google Scholar 

  • Conway, C. M., & Christiansen, M. H. (2006). Statistical learning within and between modalities: Pitting abstract against stimulus-specific representations. Psychological Science, 17, 905–912.

    PubMed  Google Scholar 

  • Diehl, R. L., Lotto, A. J., & Holt, L. L. (2004). Speech perception. Annual Review of Psychology, 55, 149–179.

    PubMed  Google Scholar 

  • Dougherty, T. M., & Haith, M. M. (2002). Infants’ use of constraints to speed information processing and to anticipate events. Infancy, 3(4), 457–473.

    Google Scholar 

  • Englund, K., & Behne, D. (2006). Changes in infant directed speech in the first six months. Infant and Child Development, 15(2), 139–160.

    Google Scholar 

  • Estes, K. G., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science, 18(3), 254–260.

    Google Scholar 

  • Finn, A. S., Lee, T., & Hudson Kam, C. L. (2014). When it hurts (and helps) to try: The role of effort in language learning. PLOS ONE, 9(7), e101806.

    PubMed  PubMed Central  Google Scholar 

  • Fiser, J., & Aslin, R. N. (2005). Encoding multielement scenes: Statistical learning of visual feature hierarchies. Journal of Experimental Psychology: General, 134(4), 521–537.

    Google Scholar 

  • Frank, M. C., Goodman, N. D., & Tenenbaum, J. B. (2007). A Bayesian framework for cross-situational word-learning. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems, volume 20 (pp. 1212–1222). Cambridge, MA: MIT Press.

    Google Scholar 

  • Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117–125.

    PubMed  PubMed Central  Google Scholar 

  • Galantucci, B., Fowler, C. A., & Turvey, M. T. (2006). The motor theory of speech perception reviewed. Psychonomic Bulletin & Review, 13(3), 361–377.

    Google Scholar 

  • Gerrits, E., & Schouten, M. E. H. (2004). Categorical perception depends on the discrimination task. Perception & Psychophysics, 66(3), 363–376.

    Google Scholar 

  • Gilbert, P. E., Kesner, R. P., & Lee, I. (2001). Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1. Hippocampus, 11(6), 626–636.

    PubMed  Google Scholar 

  • Giroux, I., & Rey, A. (2009). Lexical and sublexical units in speech perception. Cognitive Science, 33(2), 260–272.

    PubMed  Google Scholar 

  • Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological Review, 105(2), 251–279.

    PubMed  Google Scholar 

  • Gómez, R. L., & Gerken, L. (2000). Infant artificial language learning and language acquisition. Trends in Cognitive Sciences, 4(5), 178–186.

    PubMed  Google Scholar 

  • Hardcastle, W. J., & Hewlett, N. (Eds.). (2006). Coarticulation: Theory, data and techniques. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hayes, J. R., & Clark, H. H. (1970). Experiments in the segmentation of an artificial speech analog. In J. R. Hayes (Ed.), Cognition and the development of language (pp. 221–234). New York: Wiley.

    Google Scholar 

  • Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed representations. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1(3), 77–109.

    Google Scholar 

  • Hintzman, D. L. (1984). MINERVA 2: A simulation model of human memory. Behavior Research Methods, Instruments, & Computers, 16(2), 96–101.

    Google Scholar 

  • Honey, R. C., & Hall, G. (1989). Acquired equivalence and distinctiveness of cues. Journal of Experimental Psychology: Animal Behavior Processes, 15(4), 338–346.

    PubMed  Google Scholar 

  • Houston, D. M., & Jusczyk, P. W. (2003). Infants’ long-term memory for the sound patterns of words and voices. Journal of Experimental Psychology: Human Perception and Performance, 29(6), 1143–1154.

    PubMed  Google Scholar 

  • Hunt, R. H., & Aslin, R. N. (2001). Statistical learning in a serial reaction time task: Access to separable statistical cues by individual learners. Journal of Experimental Psychology: General, 130, 658–680.

    Google Scholar 

  • Iskarous, K., & Kavitskaya, D. (2010). The interaction between contrast, prosody, and coarticulation in structuring phonetic variability. Journal of Phonetics, 38(4), 625–639.

    PubMed  PubMed Central  Google Scholar 

  • James, W. (1890). The principles of psychology. New York: H. Holt and Company.

    Google Scholar 

  • Jensen, A. R., (1971). Individual differences in visual and auditory memory. Journal of Educational Psychology, 62, 123–131.

    Google Scholar 

  • Johnson, E. K., & Jusczyk, P. W. (2001). Word segmentation by 8-month-olds: When speech cues count more than statistics. Journal of Memory and Language, 44(4), 548–567.

    Google Scholar 

  • Johnson, E. K., & Seidl, A. (2008). Clause segmentation by 6-month-old infants: A crosslinguistic perspective. Infancy, 13(5), 440–455.

    Google Scholar 

  • Johnson, E. K., & Tyler, M. D. (2010). Testing the limits of statistical learning for word segmentation. Developmental Science, 13(2), 339–345.

    PubMed  PubMed Central  Google Scholar 

  • Jusczyk, P. W., Cutler, A., & Redanz, N. J. (1993). Infants’ preference for the predominant stress patterns of English words. Child Development, 64, 675–687.

    Google Scholar 

  • Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in short-term retention of single items. Journal of Verbal Learning and Verbal Behavior, 1(3), 153–161.

    Google Scholar 

  • Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83(2), B35–B42.

    PubMed  Google Scholar 

  • Kruschke, J. K. (2005). Category learning. In K. Lamberts & R. L. Goldstone (Eds.), The handbook of cognition (pp. 183–201). London, UK: Sage.

    Google Scholar 

  • Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only average. Psychological Science, 1, 115–121.

    Google Scholar 

  • Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814), 961–966.

    PubMed  Google Scholar 

  • Lew-Williams, C., Pelucchi, B., & Saffran, J. R. (2011). Isolated words enhance statistical language learning in infancy. Developmental Science, 14, 1323–1329.

    Google Scholar 

  • Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431–461.

    PubMed  Google Scholar 

  • Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358–368.

    PubMed  Google Scholar 

  • Lively, S. E., Logan, J. S., & Pisoni, D. B. (1993). Training Japanese listeners to identify English/r/and/l/. II: The role of phonetic environment and talker variability in learning new perceptual categories. The Journal of the Acoustical Society of America, 94(3), 1242–1255.

    PubMed  PubMed Central  Google Scholar 

  • Lotto, A. J., & Kluender, K. R. (1998). General contrast effects in speech perception: Effect of preceding liquid on stop consonant identification. Perception & Psychophysics, 60(4), 602–619.

    Google Scholar 

  • Lotto, A. J., Kluender, K. R., & Holt, L. L. (1997). Perceptual compensation for coarticulation by Japanese quail (Coturnix coturnix japonica). The Journal of the Acoustical Society of America, 102(2), 1134–1140.

    PubMed  Google Scholar 

  • Maye, J., Weiss, D. J., & Aslin, R. N. (2008). Statistical phonetic learning in infants: Facilitation and feature generalization. Developmental Science, 11(1), 122–134.

    PubMed  Google Scholar 

  • Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82(3), B101–B111.

    PubMed  Google Scholar 

  • McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419–457.

    PubMed  Google Scholar 

  • McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the representation of general and specific information. Journal of Experimental Psychology: General, 114(2), 159–188.

    Google Scholar 

  • McHugh, T. J., Jones, M. W., Quinn, J. J., Balthasar, N., Coppari, R., Elmquist, J. K., et al. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317(5834), 94–99.

    PubMed  Google Scholar 

  • McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2002). Gradient effects of within-category phonetic variation on lexical access. Cognition, 86(2), B33–B42.

    PubMed  Google Scholar 

  • Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85(3), 207–238.

    Google Scholar 

  • Melton, A. W., & Von Lackum, W. J. (1941). Retroactive and proactive inhibition in retention: Evidence for a two-factor theory of retroactive inhibition. The American Journal of Psychology, 54(2), 157–173.

    Google Scholar 

  • Miller, J. L., & Volaitis, L. E. (1989). Effect of speaking rate on the perceptual structure of a phonetic category. Perception & Psychophysics, 46(6), 505–512.

    Google Scholar 

  • Minda, J. P., & Smith, J. D. (2002). Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(2), 275–292.

    PubMed  Google Scholar 

  • Mintz, T. H. (2003). Frequent frames as a cue for grammatical categories in child directed speech. Cognition, 90(1), 91–117.

    PubMed  Google Scholar 

  • Mirman, D., Magnuson, J. S., Estes, K. G., & Dixon, J. A. (2008). The link between statistical segmentation and word learning in adults. Cognition, 108(1), 271–280.

    PubMed  PubMed Central  Google Scholar 

  • Misyak, J. B., & Christiansen, M. H. (2012). Statistical learning and language: An individual differences study. Language Learning, 62(1), 302–331.

    Google Scholar 

  • Misyak, J. B., Christiansen, M. H., & Tomblin, J. B. (2010). On-line individual differences in statistical learning predict language processing. Frontiers in Psychology, 1, 31.

    PubMed  PubMed Central  Google Scholar 

  • Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychological Review, 110, 611–646.

    Google Scholar 

  • O’Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketz, N. (2014). Complementary learning systems. Cognitive Science, 38(6), 1229–1248.

    PubMed  Google Scholar 

  • Oakes, L. M., & Spalding, T. L. (1997). The role of exemplar distribution in infants’ differentiation of categories. Infant Behavior and Development, 20(4), 457–475.

    Google Scholar 

  • Onnis, L., & Thiessen, E. (2013). Language experience changes subsequent learning. Cognition, 126(2), 268–284.

    PubMed  Google Scholar 

  • Orbán, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008). Bayesian learning of visual chunks by human observers. Proceedings of the National Academy of Sciences, 105(7), 2745–2750.

    Google Scholar 

  • Paap, K. R., Newsome, S. L., McDonald, J. E., & Schvaneveldt, R. W. (1982). An activation–verification model for letter and word recognition: The word-superiority effect. Psychological Review, 89(5), 573–594.

    PubMed  Google Scholar 

  • Penney, T., Gibbon, J., & Meck, W. (2000). Differential effects of auditory and visual signals on clock speed and temporal memory. Journal of Experimental Psychology: Human Perception and Performance, 26, 1770–1787.

    Google Scholar 

  • Perkell, J. S., & Matthies, M. L. (1992). Temporal measures of anticipatory labial coarticulation for the vowel/u: Within-and cross-subject variability. The Journal of the Acoustical Society of America, 91(5), 2911–2925.

    PubMed  Google Scholar 

  • Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–238.

    PubMed  Google Scholar 

  • Perruchet, P., & Vinter, A. (1998). PARSER: A model for word segmentation. Journal of Memory and Language, 39(2), 246–263.

    Google Scholar 

  • Perry, L. K., Samuelson, L. K., Malloy, L. M., & Schiffer, R. N. (2010). Learn locally, think globally: Exemplar variability supports higher-order generalization and word learning. Psychological Science, 21(12), 1894–1902.

    PubMed  PubMed Central  Google Scholar 

  • Pisoni, D. B., & Tash, J. (1974). Reaction times to comparisons within and across phonetic categories. Perception & Psychophysics, 15(2), 285–290.

    Google Scholar 

  • Pollack, I., & Pickett, J. M. (1964). Intelligibility of excerpts from fluent speech: Auditory vs. structural context. Journal of Verbal Learning and Verbal Behavior, 3(1), 79–84.

    Google Scholar 

  • Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77(3p1), 353–363.

    PubMed  Google Scholar 

  • Principe, C. P., & Langlois, J. H. (2012). Shifting the prototype: Experience with facesinfluences affective and attractiveness preferences. Social Cognition, 30, 109–120.

    PubMed  PubMed Central  Google Scholar 

  • Quinn, P. C., Eimas, P. D., & Rosenkrantz, S. L. (1993). Evidence for representations of perceptually similar natural categories by 3-month-old and 4-month-old infants. Perception, 22, 463–475.

    PubMed  Google Scholar 

  • Reber, A. S., & Lewis, S. (1977). Implicit learning: An analysis of the form and structure of a body of tacit knowledge. Cognition, 5(4), 333–361.

    Google Scholar 

  • Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.

    Google Scholar 

  • Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Cognitive Science, 1(6), 906–914.

    PubMed  Google Scholar 

  • Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104(3), 192–233.

    Google Scholar 

  • Rost, G. C., & McMurray, B. (2009). Speaker variability augments phonological processing in early word learning. Developmental Science, 12(2), 339–349.

    PubMed  PubMed Central  Google Scholar 

  • Saffran, J. R. (2001). Words in a sea of sounds: The output of infant statistical learning. Cognition, 81(2), 149–169.

    PubMed  Google Scholar 

  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928.

    PubMed  Google Scholar 

  • Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70(1), 27–52.

    PubMed  Google Scholar 

  • Saffran, J. R., Pollak, S. D., Seibel, R. L., & Shkolnik, A. (2007). Dog is a dog is a dog: Infant rule learning is not specific to language. Cognition, 105(3), 669–680.

    PubMed  Google Scholar 

  • Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The necessity of the medial temporal lobe for statistical learning. Journal of Cognitive Neuroscience, 26(8), 1736–1747.

    PubMed  PubMed Central  Google Scholar 

  • Schapiro, A. C., Kustner, L. V., & Turk-Browne, N. B. (2012). Shaping of object representations in the human medial temporal lobe based on temporal regularities. Current Biology, 22(17), 1622–1627.

    PubMed  Google Scholar 

  • Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B., & Botvinick, M. M. (2013). Neural representations of events arise from temporal community structure. Nature Neuroscience, 16(4), 486–492.

    PubMed  PubMed Central  Google Scholar 

  • Schapiro, A. C., Turk-Browne, N. B., Norman, K. A., & Botvinick, M. M. (2016). Statistical learning of temporal community structure in the hippocampus. Hippocampus, 26(1), 3–8.

    PubMed  Google Scholar 

  • Slone, L. K., & Johnson, S. P. (2015). Infants’ statistical learning: 2-and 5-month-olds’ segmentation of continuous visual sequences. Journal of Experimental Child Psychology, 133, 47–56.

    PubMed  PubMed Central  Google Scholar 

  • Smith, E. R. (2009). Distributed connectionist models in social psychology. Social and Personality Psychology Compass, 3(1), 64–76.

    Google Scholar 

  • Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(6), 1411–1436.

    Google Scholar 

  • Smith, L., & Yu, C. (2008). Infants rapidly learn word-referent mappings via cross-situational statistics. Cognition, 106(3), 1558–1568.

    PubMed  Google Scholar 

  • Stager, C. L., & Werker, J. F. (1997). Infants listen for more phonetic detail in speech perception than in word-learning tasks. Nature, 388, 381–382.

    PubMed  Google Scholar 

  • Stern, D. N., Spieker, S., Barnett, R. K., & MacKain, K. (1983). The prosody of maternal speech: Infant age and context related changes. Journal of Child Language, 10(1), 1–15.

    PubMed  Google Scholar 

  • Swingley, D. (1999). Conditional probability and word discovery: A corpus analysis of speech to infants. In M. Hahn & S. C. Stoness (Eds.), Proceedings of the 21st annual conference of the cognitive science society (pp. 724–729). Mahwah, NJ: LEA.

    Google Scholar 

  • Taylor, P., & Black, A. W. (1998). Assigning phrase breaks from part-of-speech sequences. Computer Speech & Language, 12(2), 99–117.

    Google Scholar 

  • Thiessen, E. D. (2007). The effect of distributional information on children’s use of phonemic contrasts. Journal of Memory and Language, 56(1), 16–34.

    Google Scholar 

  • Thiessen, E. D., Kronstein, A. T., & Hufnagle, D. G. (2013). The extraction and integration framework: A two-process account of statistical learning. Psychological Bulletin, 139(4), 792–814.

    PubMed  Google Scholar 

  • Thiessen, E. D., & Pavlik, P. I. (2013). iMinerva: A mathematical model of distributional statistical learning. Cognitive Science, 37(2), 310–343.

    PubMed  Google Scholar 

  • Thiessen, E. D., & Pavlik, P. I. (2016). Modeling the role of distributional information in children’s use of phonemic contrasts. Journal of Memory and Language, 88, 117–132.

    Google Scholar 

  • Thiessen, E. D., & Saffran, J. R. (2004). Spectral tilt as a cue to word segmentation in infancy and adulthood. Perception & Psychophysics, 66(5), 779–791.

    Google Scholar 

  • Thiessen, E. D., & Saffran, J. R. (2007). Learning to learn: Infants’ acquisition of stress-based strategies for word segmentation. Language Learning and Development, 3(1), 73–100.

    Google Scholar 

  • Thiessen, E. D., & Yee, M. N. (2010). Dogs, bogs, labs, and lads: What phonemic generalizations indicate about the nature of Children’s early word-form representations. Child Development, 81(4), 1287–1303.

    PubMed  Google Scholar 

  • Thompson, S. P., & Newport, E. L. (2007). Statistical learning of syntax: The role of transitional probability. Language Learning and Development, 3(1), 1–42.

    Google Scholar 

  • Tomasello, M. (2000). Do young children have adult syntactic competence? Cognition, 74, 209–253.

    PubMed  Google Scholar 

  • Toro, J. M., Sinnett, S., & Soto-Faraco, S. (2005). Speech segmentation by statistical learning depends on attention. Cognition, 97, B25–B34.

    Google Scholar 

  • Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21(10), 1934–1945.

    PubMed  PubMed Central  Google Scholar 

  • Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual anticipation triggered by statistical learning. Journal of Neuroscience, 30(33), 11177–11187.

    PubMed  Google Scholar 

  • van den Bos, E., Christiansen, M. H., & Misyak, J. B. (2012). Statistical learning of probabilistic nonadjacent dependencies by multiple-cue integration. Journal of Memory and Language, 67(4), 507–520.

    Google Scholar 

  • Vanpaemel, W. (2016). Prototypes, exemplars and the response scaling parameter: A Bayes factor perspective. Journal of Mathematical Psychology, 72, 183–190.

    Google Scholar 

  • Vitevitch, M. S., & Luce, P. A. (2004). A web-based interface to calculate phonotactic probability for words and nonwords in English. Behavior Research Methods, Instruments, & Computers, 36(3), 481–487.

    Google Scholar 

  • Werker, J. F., Pons, F., Dietrich, C., Kajikawa, S., Fais, L., & Amano, S. (2007). Infant-directed speech supports phonetic category learning in English and Japanese. Cognition, 103(1), 147–162.

    PubMed  Google Scholar 

  • Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7(1), 49–63.

    Google Scholar 

  • Winocur, G., Moscovitch, M., & Bontempi, B. (2010). Memory formation and long-term retention in humans and animals: Convergence towards a transformation account of hippocampal–neocortical interactions. Neuropsychologia, 48(8), 2339–2356.

    PubMed  Google Scholar 

  • Zaki, S. R., Nosofsky, R. M., Stanton, R. D., & Cohen, A. L. (2003). Prototype and exemplar accounts of category learning and attentional allocation: A reassessment. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1160–1173.

    PubMed  Google Scholar 

  • Zhao, J., Ngo, N., McKendrick, R., & Turk-Browne, N. B. (2011). Mutual interference between statistical summary perception and statistical learning. Psychological Science, 22(9), 1212–1219.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik D. Thiessen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thiessen, E.D. (2020). How the Demands of a Variable Environment Give Rise to Statistical Learning. In: Childers, J. (eds) Language and Concept Acquisition from Infancy Through Childhood. Springer, Cham. https://doi.org/10.1007/978-3-030-35594-4_4

Download citation

Publish with us

Policies and ethics