Skip to main content

Deficit Irrigation and Water Conservation

  • Chapter
  • First Online:
Deficit Irrigation
  • 835 Accesses

Abstract

In this chapter, we tackled some of the concepts and definitions used in application of deficit irrigation instead of full irrigation as a technology aims at conserving irrigation water. Both water use efficiency and water productivity are important estimators in the assessment of the effect of deficit irrigation. Water use efficiency serves as a key variable in the assessment of plant responses to water stress induced by deficit irrigation. On the other hand, water productivity is a quantitative term used to define the relationship between crop produced and the amount of water involved in crop production. This chapter also reviewed deficit irrigation strategies, which consist of sustain deficit irrigation, regulated deficit irrigation (stage-based and partial root zone irrigation), and subsurface drip irrigation. The hidden role of intercropping systems in irrigation water conservation was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelraouf RE, El Habbasha SF, Taha MH, Refaie KM (2013) Effect of irrigation water requirements and fertigation levels on growth, yield and water use efficiency in wheat. Middle-East J Sci Res 16(4):441–450. https://doi.org/10.5829/idosi.mejsr.2013.16.04.11733.

    Article  Google Scholar 

  • Anderson RL (2007) Managing weeds with a dualistic approach of prevention and control: a review. Agron Sustain Dev 27:13–18

    Article  Google Scholar 

  • Berenguer MJ, Vossen PM, Grattan SR, Connell JH, Polito VS (2006) Tree irrigation levels for optimum chemical and sensory properties of olive oil. Hortic Sci 41:427–432

    CAS  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112:119–123

    Article  Google Scholar 

  • Bramley H, Turner NC, Siddique KHM (2013) Water use efficiency. In: Kole C (ed) Genomics and breeding for climate-resilient crops, vol 2. Springer, Berlin, pp 225–268. https://doi.org/10.1007/978-3-642-37048-9_6

    Chapter  Google Scholar 

  • Çakir R (2004) Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop Res 89:1–16. https://doi.org/10.1016/j.fcr.2004.01.005.

    Article  Google Scholar 

  • Capra A, Consoli S, Scicolone B (2008). In: Alonso A, Iglesias HJ (eds) Agricultural irrigation research progress, Nova Science Publishers, Inc, New York

    Google Scholar 

  • Chai Q, Gan Y, Turner NC, Zhang RZ, Yang C, Niu Y, Siddique KHM (2014) Water-saving innovations in Chinese agriculture. Adv Agron 126:147–197. https://doi.org/10.1016/B978-0-12-800132-5.00002-X

    Article  Google Scholar 

  • Chai Q, Gan Y, Zhao C, Xu H, Waskom RM, Niu Y, Siddique KHM (2016) Regulated deficit irrigation for crop production under drought stress. A review. Agron Sustain Dev 36(3):2–21

    Google Scholar 

  • Chalmers DJ, Mitchell PD, van Heek L (1981) Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. J Am Soc Hortic Sci 106:307–312

    Google Scholar 

  • Coll L, Cerrudo A, Rizzalli R, Monzon JP, Andrade FH (2012) Capture and use of water and radiation in summer intercrops in the south-east Pampas of Argentina. Field Crop Res 134:105–113

    Article  Google Scholar 

  • Dabbou S, Chehab H, Faten B, Dabbou S, Esposto S, Selvaggini R (2010) Effect of three irrigation regimes on Arbequina olive oil produced under Tunisian growing conditions. Agric Water Manag 97:763–768. https://doi.org/10.1016/j.agwat.2010.01.011

    Article  Google Scholar 

  • De Souza CR, Maroco JP, Dos Santos TP, Rodrigues ML, Lopes C, Pereira JS, Chaves MM (2005) Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars. Agric Ecosyst Environ 106:261–274. https://doi.org/10.1016/j.agee.2004.10.014Souza

    Article  Google Scholar 

  • De Wit M, Stankiewicz J (2006) Changes in surface water supply across Africa with predicted climate change. Science 31:1917–1921. https://doi.org/10.1126/science.1119929

    Article  CAS  Google Scholar 

  • Dias LB (2008) Água nas plantas. Monograph, Universidade Federal de Lavras, Lavras-MG, 53 p

    Google Scholar 

  • Domínguez A, de Juan JA, Tarjuelo JM, Martínez RS, Martínez-Romero A (2012) Determination of optimal regulated deficit irrigation strategies formaize in a semi-arid environment. Agric Water Manag 110:67–77. https://doi.org/10.1016/j.agwat.2012.04.002

    Article  Google Scholar 

  • Dry PR, Loveys BR (1998) Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Aust J Grape Wine Res 4:140–148. https://doi.org/10.1111/j.1755-0238.1998.tb00143

    Article  Google Scholar 

  • Du T, Kang S, Zhang J, Li F (2008) Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China. Irrig Sci 26:147–159. https://doi.org/10.1007/s00271-007-0081-0

    Article  Google Scholar 

  • Du TS, Kang SZ, Zhang XY, Zhang JH (2014) China’s food security is threatened by the unsustainable use of water resources in North and Northwest China. Food Energy Secur 3:7–18

    Article  Google Scholar 

  • El-Mehy AA, Taha AM, Abd-Allah AAMM (2018) Maximizing land and water productivity by intercropping sunflower with peanut under sprinkler irrigation. Alex Sci Exch J 39(1):144–159

    Google Scholar 

  • English MJ (1990) Deficit irrigation: an analytical framework. J Irrig Drain Eng ASCE 116(3):399–412

    Article  Google Scholar 

  • English M, Nuss GS 1982. Designing for Deficit Irrigation. J. Irrig. Drain. Div. 108:91–106.

    Google Scholar 

  • Fabeiro Cortés C, Martín de Santa Olalla F, López R, Domínguez A (2003) Production and quality of the sugar beet (Beta vulgaris L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate. Agric Water Manag 62:215–227

    Article  Google Scholar 

  • Fan T, Stewart BA, Payne WA, Wang Y, Song S, Luo J, Robinson CA (2005) Supplemental irrigation and water: yield relationships for plasticulture crops in the loess plateau of China. Agron J 97:177–188

    Google Scholar 

  • FAO (2007) Climate change and food security: a framework document. FAO, Rome

    Google Scholar 

  • Feng L, Sun Z, Zheng M, Muchoki M, Zheng J, Yang N, Bai W, Feng CH, Zhang Z, Cai Q, Zhang D (2016) Productivity enhancement and water use efficiency of peanut-millet intercropping. Pak J Bot 48(4):1459–1466

    Google Scholar 

  • Fereres E, Soriano A (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58:147–159

    Article  CAS  Google Scholar 

  • Fernandes-Silva A, Oliveira M, Paço TA, Ferreira I (2018) Deficit irrigation in Mediterranean fruit trees and grapevines: water stress indicators and crop responses. In: Irrigation in agroecosystems. https://doi.org/10.5772/intechopen.80365

    Chapter  Google Scholar 

  • Gan Y, Siddique KHM, Turner NC, Li X-G, Niu J-Y, Yang C, Liu L, Chai Q (2013) Ridge-furrow mulching systems—an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv Agron 118:429–476. https://doi.org/10.1007/s11104-010-0312-7

    Article  CAS  Google Scholar 

  • Garofalo P, Rinaldi M (2015) Leaf gas exchange and radiation use efficiency of sunflower (Helianthus annuus L.) in response to different deficit irrigation strategies: from solar radiation to plant growth analysis. Eur J Agron 64:88–97. https://doi.org/10.1016/j.eja.2014.12.010

    Article  Google Scholar 

  • Girona J, Gelly M, Mata M, Arbones A, Rufat J, Marsal J (2005) Peach tree response to single and combined deficit irrigation regimes in deep soils. Agric Water Manag 72:97–108

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. https://doi.org/10.1126/science.1185383

    Article  CAS  Google Scholar 

  • Grant RF (1992) Interaction between carbon dioxide and water deficits affecting canopy photosynthesis: simulation and testing. Crop Sci 32:1322–1328

    Article  CAS  Google Scholar 

  • Hongbo S, Zongsuo L, Mingan S, Shimeng S, Zanmin H (2005) Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticumae stivum L.) genotypes during two vegetative growth stages at water deficits. Colloids Surf B Biointerfaces 43:221–227. https://doi.org/10.1016/j.colsurfb.2005.05.005

    Article  CAS  Google Scholar 

  • Hsiao TC (1993) Growth and productivity of crops in relation to water status. Acta Hortic 335:137–148

    Article  Google Scholar 

  • Hsiao TC, Steduto P, Fereres E (2007) A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig Sci 25:209–231

    Article  Google Scholar 

  • Hu F, Chai Q, Yu A, Yin W, Cui H, Gan Y (2015) Less carbon emissions of wheat–maize intercropping under reduced tillage in arid areas. Agron Sustain Dev 35:701–711. https://doi.org/10.1007/s13593-014-0257-y

    Article  CAS  Google Scholar 

  • Igbadun HE, Mahoo HF, Andrew KPR, Baanda T, Salim A (2006) Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of the great Ruaha River basin, Tanzania. Agric Water Manag 85(1–2):141–150

    Article  Google Scholar 

  • Kamara AY, Menkir A, Badu Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141:43–50

    Article  Google Scholar 

  • Kirigwi F, van Ginkel M, Trethowan R, Sears RG, Rajaram S, Paulsen GM (2004) Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica 135:361–371

    Article  Google Scholar 

  • Kramer PJ (1983) Water relations of plants. Academic, New York, pp 146–186

    Book  Google Scholar 

  • Kuşçu H, Turhan A, Demir AO (2014) The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment. Agrc Water Manag 133:92–103. https://doi.org/10.1016/j.agwat.2013.11.008

    Article  Google Scholar 

  • Li CX, Zhou XG, Sun JS, Wang HZ, Gao Y (2013) Dynamics of root water uptake and water use efficiency under alternate partial rootzone irrigation. Desalin Water Treat. https://doi.org/10.1080/19443994.2013

  • Li Y, Zhang W, Ma L, Wu L, Shen J, Davies WJ, Oenema O, Zhang F, Dou Z (2014) An analysis of China’s grain production: looking back and looking forward. Food Energy Secur 3:19–32

    Article  Google Scholar 

  • Lithourgidis AS (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5(4):396–410

    Google Scholar 

  • Liu F, Shahnazari A, Andersen MN, Jacobsen SE, Jensen CR (2006) Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci Hortic 109:113–117. https://doi.org/10.1016/j.scienta.2006.04.004

    Article  Google Scholar 

  • Machado S (2009) Does intercropping have a role in modern agriculture? J Soil Water Conserv 64(2):233–239

    Article  Google Scholar 

  • Mao LL, Zhang LZ, Li WW, Werf WVD, Sun JH, Spiertz H, Li L (2012) Yield advantage and water saving in maize/pea intercrop. Field Crop Res 138:11–20

    Article  Google Scholar 

  • Ministry of Irrigation and Water Resources (2014) Water scarcity in Egypt: the urgent need for regional cooperation among the Nile basin countries. Technical report

    Google Scholar 

  • Noreldin T, Ouda S, Oussama M, Tawfik M (2015) CropSyst model for wheat under deficit irrigation using sprinkler and drip irrigation in sandy soil. J Water Land Dev 26(VII–IX):57–64

    Article  CAS  Google Scholar 

  • Ouda S, Hefny YAA, Abdel-Wahab TI, Abdel-Wahab SI (2018) Intercropping systems of sunflower and peanut under different irrigation regimes and potassium fertilizer levels. Egypt J Agron. The 15th international conference on crop science, pp 85–104

    Google Scholar 

  • Qin A, Huang G, Chai Q, Yu A, Huang P (2013) Grain yield and soil respiratory response to intercropping systems on arid land. Field Crop Res 144:1–10. https://doi.org/10.1016/j.fcr.2012.12.005

    Article  Google Scholar 

  • Rahman T, Liu X, Hussain S, Ahmed S, Chen G, Yang F (2017) Water use efficiency and evapotranspiration in maize-soybean relay strip intercrop systems as affected by planting geometries. PLoS One 12(6):e0178332. https://doi.org/10.1371/journal.pone.0178332

    Article  CAS  Google Scholar 

  • Rodrigues O, Lhamby JCB, Didonet AD, Marchese JA, Scipioni C (1998) Efeito da deficiência hídrica na produção de trigo. Pesq Agropec Bras 33:839–846

    Google Scholar 

  • Sakellariou-Makrantonaki Ì, Kalfountzos D, Papanikos N (2000) Evaluation of surface and subsurface drip irrigation effect on sugar-beet yield. In: Proceedings of 2th national congress of the Hell. Soc. Agric. Eng., (HelAgEng), Volos, pp 157–164

    Google Scholar 

  • Sarto MVM, do Carmo Lana M, Rampim L, Rosset JS, Inagaki AM, Bassegio D (2016) Effects of silicon (Si) fertilization on gas exchange and production in Brachiaria. Aust J Crop Sci 10:307–313

    Article  CAS  Google Scholar 

  • Sarto MVM, Sarto JRW, Rampim L, Rosset JS, Bassegio D, da Costa PF, Inagaki AM (2017) Wheat phenology and yield under drought: a review. Aust J Crop Sci 11(08):941–946. https://doi.org/10.21475/ajcs.17.11.08.pne351

    Article  CAS  Google Scholar 

  • Schiermeier Q (2014) The parched planet: water on tap. Nature 510:326–328. https://doi.org/10.1038/510326a

    Article  CAS  Google Scholar 

  • Schussler J, Westgate M (1991) Maize kernel set at low water potential: II. Sensitivity to reduced assimilates at pollination. Crop Sci 31:1196–1203

    Article  CAS  Google Scholar 

  • Sepaskhah AR, Ghahraman B (2004) The effects of irrigation efficiency and uniformity coefficient on relative yield and profit for deficit irrigation. Biosyst Eng 87(4):495–507

    Article  Google Scholar 

  • Siddique KHM, Bramley H (2014) Water deficits: development. Encyclop Nat Res:1–4. https://doi.org/10.1081/E-ENRL-120049220

    Chapter  Google Scholar 

  • Snyder RL (1992) When water is limited how many acres do you plant? Calif Agric 47:7–9

    Google Scholar 

  • Sofo A, Palese AM, Casacchia T, Dichio B, Xiloyannis C (2012) Sustainable fruit production in Mediterranean orchards subjected to drought stress. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants metabolism, productivity and sustainability. Springer, New York, pp 105–129. https://doi.org/10.1007/978-1-4614-0634-1-6

    Chapter  Google Scholar 

  • Taha A, Ouda S (2016) Deficit irrigation for wheat and maize grown in sandy soil to face water scarcity. 4th African regional ICID conference. 24–28 April. Aswan, Egypt

    Google Scholar 

  • Taiz L, Zeiger E (2004) Fisiologia vegetal. Porto Alegre, Artmed, pp 449–448

    Google Scholar 

  • Taiz L, Zeiger E (2013) Fisiologia vegetal. Porto Alegre, Artmed, pp 343–368

    Google Scholar 

  • Valipour M (2014) Pressure on renewable water resources by irrigation to 2060. Acta Adv Agric Sci 2:32–42. http://www.aaasjournal.org

    Google Scholar 

  • Vandoorne B, Mathieu AS, Van Den Ende W, Vergauwen R, Périlleux C, Javaux M, Lutts S (2012) Water stress drastically reduces root growth and inulin yield in Cichoriumintybus (var. sativum) independently of photosynthesis. J Exp Bot 63:4359–4373. https://doi.org/10.1093/jxb/ers095

    Article  CAS  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann RC, Davies PM (2010a) Rivers in crisis: global water insecurity for humans and biodiversity

    Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010b) Global threats to human water security and river biodiversity. Nature 467(7315):555–561. https://doi.org/10.1038/nature09440

    Article  CAS  Google Scholar 

  • Vyrlas P, Sakellariou-Makrantonaki M, Kalfountzos D (2014) Aerogation: crop root-zone aeration through subsurface drip irrigation system. WSEAS Trans Environ Dev 10:250–255

    Google Scholar 

  • Wang Z, Kang S, Jensen CR, Liu F (2012) Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves. J Exp Bot 63:1145–1153. https://doi.org/10.1093/jxb/err331

    Article  CAS  Google Scholar 

  • Wilkinson S, Hartung W (2009) Food production: reducing water consumption by manipulating long-distance chemical signalling in plants. J Exp Bot 60:1885–1891. https://doi.org/10.1093/jxb/erp121

    Article  CAS  Google Scholar 

  • Xie KY, Wang XX, Zhang RF, Gong XF, Zhang SB, Mares R, Gavilan C, Posadas A, Quiroz R (2012) Effect of partial root-zone drying on potato water utilization on semi-arid conditions in China. Chin Potato J 26:5–10, (in Chinese with English abstract)

    Google Scholar 

  • Xu S, Ding H, Su F, Zhang A, Jiang M (2009) Involvement of protein phosphorylation in water stress-induced antioxidant defense in maize leaves. J Integr Plant Biol 51:654–662. https://doi.org/10.1111/j.1744-7909.2009.00844.x

    Article  CAS  Google Scholar 

  • Yactayo W, Ramírez DA, Gutiérrez R, Mares V, Posadas A, Quiroz R (2013) Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency. Agrc Water Manag 123:65–70. https://doi.org/10.1016/j.agwat.2013.03.009

    Article  Google Scholar 

  • Yang C, Huang G, Chai Q, Luo Z (2011) Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China. Field Crop Res 124:426–432

    Article  Google Scholar 

  • Yang L, Qu H, Zhang Y, Li F (2012) Effects of partial root-zone irrigation on physiology, fruit yield and quality andwater use efficiency of tomato under different calcium levels. Agrc Water Manag 104:89–94. https://doi.org/10.1016/j.agwat.2011.12.001

    Article  Google Scholar 

  • Yin W, Yu A, Chai Q, Hu F, Feng F, Gan Y (2015) Wheat and maize relay-planting with straw covering increases water use efficiency. Agron Sustain Dev 35:815–825. https://doi.org/10.1007/s13593-015-0286-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ouda, S., Noreldin, T. (2020). Deficit Irrigation and Water Conservation. In: Deficit Irrigation. Springer, Cham. https://doi.org/10.1007/978-3-030-35586-9_2

Download citation

Publish with us

Policies and ethics