Skip to main content

Diseases of Lima Bean

Handbook of Vegetable and Herb Diseases

Part of the book series: Handbook of Plant Disease Management ((HPDM))

Abstract

Lima beans (Phaseolus lunatus) are grown worldwide for food use, but the end-product may come in various forms. Lima beans are typically cultivated for its flat, edible, starchy seed, which is usually pale green when immature and whitish or light brown when mature. Lima beans can be grown for processing, as a succulent green bean used for canning or freezing or as a dry bean. Two market classes exist, baby limas and large limas. Baby lima beans are direct descendants of a Mesoamerican subgroup that express more heat tolerance than the large lima bean types that are derived from an Andean subgroup. In the USA, lima beans are grown mainly in the mid-Atlantic region for processing and in the Midwest and California for dry beans. The major diseases posing threats to lima bean production include anthracnose, gray mold, white mold, downy mildew, Pythium root rot, Fusarium root rot, Rhizoctonia root rot, pod rot, southern blight, common bacterial blight, halo blight, bacterial brown spot, and root-knot nematode. Some of these diseases are more regional in their importance based on the environment that favors their development. For example, white mold predominates in relatively moderate climates, whereas southern blight and root knot nematodes are more of a problem in warmer regions of the world. General management strategies for diseases of lima beans may be found in the introductory chapters on integrated disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abawi GS (1989) Root rots. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics, 2nd edn. Centro International de Agricultura Tropical, Cali, Columbia, pp 105–157

    Google Scholar 

  • Abawi GS (2005) Root-knot nematodes. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 52–55

    Google Scholar 

  • Aggour A, Coyne DP, Vidaver AK, Eskridge KM (1989) Transmission of the common blight pathogen in bean seed. J Am Soc Hortic Sci 114:1002–1008

    Article  Google Scholar 

  • Allen DJ, Ampofo JKO, Wortman CS (1996) Pests, diseases, and nutritional disorders of the common bean of Africa: a field guide. CIAT Publication No 260, Cali, Columbia

    Google Scholar 

  • Allmaras RR, Kraft JM, Miller DE (1988) Effects of soil compaction and incorporated crop residue on root health. Annu Rev Phytopathol 26:219–243

    Article  Google Scholar 

  • Ansari KI, Palacios N, Araya C, Langin T, Egan D, Doohan FM (2004) Pathogenic and genetic variability among Colletotrichum lindemuthianum isolates of different geographic origins. Plant Pathol 53:635–642

    Article  CAS  Google Scholar 

  • App F (1959) The history and economic importance of lima bean downy mildew disease. Proceedings for the American Society of Horticultural Science 33:473–476

    Google Scholar 

  • Aveskamp MM, Verkley GJM, de Gruyter J, Murace MA, Perelló A, Woudenberg JHC, Groenewald JZ, Crous PW (2009) DNA phylogeny reveals polyphyly of Phoma section, Peyronellaea and multiple taxonomic novelties. Mycologia 101:363–382

    Article  CAS  PubMed  Google Scholar 

  • Aycock R (1966) Stem rot and other diseases caused by Sclerotium rolfsii. Technical Bulletin 174. North Carolina State University Agricultural Experiment Station, Raleigh

    Google Scholar 

  • Ayers WA, Lumsden RD (1975) Factors affecting production and germination of oospores of three Pythium species. Phytopathology 65:1094–1100

    Article  Google Scholar 

  • Bardin SD, Huang HC (2001) Research on biology and control of Sclerotinia diseases in Canada. Can J Plant Pathol 23:88–98

    Article  Google Scholar 

  • Barker KR (1998) Introduction and synopsis in advancements in nematology. In: Barker KR, Pederson GA, Windham GL (eds) Plant and nematode interactions. American Society of Agronomic Crop Science, , American Soil Science Society of America, Madison, pp 1–20

    Chapter  Google Scholar 

  • Baudoin JP (2006) Phaseolus lunatus L. Record from Protabase. In: Brink M, Belay G (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen

    Google Scholar 

  • Boland GJ, Hall R (1987) Epidemiology of white mold of white bean in Ontario. Can J Plant Pathol 9:218–224

    Article  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)–model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Burke DW, Miller DE (1983) Control of Fusarium root rot with resistant beans and cultural management. Plant Dis 67:1312–1317

    Article  Google Scholar 

  • Cavalcate GRS, Barguil BM, Viera WAS, Lima WG, Michereff SJ, Doyle VP, Camara MPS (2019) Diversity, prevalence, and virulence of Colletotrichum species associated with lima bean in Brazil. Plant Dis 103:1961–1966

    Article  Google Scholar 

  • Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW (2015) Resolving the Phoma enigma. Stud Mycol 82:137–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coley-Smith JR (1980) Sclerotia and other structures in survival. In: Coley-Smith JR, Verhoff K, Jarvis WR (eds) The biology of Botrytis. Academic Press, New York, p 317

    Google Scholar 

  • Cox RS, Hyre RA (1951) Downy mildew of lima bean: overwintering of the causal organism, Phytophthora phaseoli Thaxter, in Delaware. Trans Peninsula Hort Soc 41:58–64

    Google Scholar 

  • Daub ME, Hagedorn DJ (1981) Epiphytic populations of Psuedomonas syringae on susceptible and resistant bean lines. Phytopathology 71:547–550

    Article  Google Scholar 

  • Davey J, Gregory N, Mulrooney R, Evans T, Carroll R (2008) First report of mefenoxam resistant isolates of Phytophthora capsici from lima bean pods in the mid-Atlantic region. Plant Dis 92:656

    Article  CAS  PubMed  Google Scholar 

  • Davidson CR (2002) Studies of Phytophthora phaseoli, causal agent of lima bean downy mildew including race assessment, transformation, growth characteristics and varietal response. M.S. thesis. University of Delaware, Newark

    Google Scholar 

  • Davidson CR, Carroll RB, Evans TA, Mulrooney RP, Kim SH (2002) First report of Phytophthora capsici infecting Lima Bean (Phaseolus lunatus) in the Mid-Atlantic region. Plant Dis 86:1049

    Article  CAS  PubMed  Google Scholar 

  • Del Rio LE, Venette JR, Lamey H (2004) Impact of white mold incidence on dry bean yield under non-irrigated conditions. Plant Dis 88:1352–1356

    Article  PubMed  Google Scholar 

  • Dillard HR, Cobb AC (1993) Survival of Colletotrichum lindemuthianum in bean debris in New York state. Plant Dis 77:1233–1238

    Article  Google Scholar 

  • Drijfhaut E, Silbernagel MY, Burke DW (1978) Differentiation of strains of bean common mosaic virus. Neth J Plant Pathol 84:13–26

    Article  Google Scholar 

  • Ercolani GL, Hagedorn DJ, Kelman A, Rand RE (1974) Epiphytic survival of Psuedomonas syringae on hairy vetch in relation to epidemiology of bacterial brown spot of bean in Wisconsin. Phytopathology 64:1330–1339

    Article  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. American Phytopathological Society, St. Paul

    Google Scholar 

  • Evans TA, Mulrooney RP, Santamaria L (2005) Development of races of Phytophthora phaseoli, the causal agent of downy mildew of lima bean (Phaseolus lunatus) and development of resistance. Annual Report Bean Improvement Cooperative 49:15–16

    Google Scholar 

  • Evans TA, Mulrooney RP, Gregory NF, Kee E (2007) Lima bean downy mildew: etiology, and management strategies for Delaware and the mid-Atlantic region. Plant Dis 91:128–135

    Article  PubMed  Google Scholar 

  • Everts KL, Walter TL, Johnson Y, Ash A, Thomas L, Koval D (2020) First report of Didymella americana on lima bean (Phaseoulus lunatus) in Delaware and Maryland. Plant Dis. https://doi.org/10.1094/PDIS-12-19-2614-PDN

  • Feng X, Orellana GE, Myers JR, Karasev AV (2018) Recessive resistance to Bean common mosaic virus conferred by the bc-1 and bc-2 genes in common bean (Phaseolus vulgaris L.) affects long distance movement of the virus. Phytopathology 108:1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Orellana GE, Green JC, Metzer M, Hu JS, Karasev AV (2019) A new strain of Bean Common Mosaic Virus from Lima Bean (Phaseolus lunatus): biological and molecular characterization. Plant Dis 103:1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Ferreira SA, Boley RA (1992) Sclerotium rolfsii. http://www.extento.hawaii.edu/Kbase/Crop/Type/s_rolfs.htm#HOSTS

  • Flores-Estévez N, Acosta-Gallegos JA, Silva-Rosales L (2003) Bean common mosaic virus and Bean common mosaic necrosis virus in Mexico. Plant Dis 87:21–25

    Article  PubMed  Google Scholar 

  • Fofana B, du Jardin P, Baudoin JP (2001) Genetic diversity in the lima bean (Phaseolus lunatus L.) as revealed by chloroplast DNA (cpDNA) variations. Genet Resour Crop Evol 48:437–445

    Article  Google Scholar 

  • Forster R (2005) Gray mold in: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp. 34–35

    Google Scholar 

  • Fuller PA, Steadman JR, Coyne DP (1984) Enhancement of white mold avoidance and yield in dry bean by canopy elevation. HortScience 19:78–79

    Article  Google Scholar 

  • Garcia-Arenal F, Sagasta EM (1980) Scanning electron microscopy of Botrytis cinerea penetration of bean (Phaseolus vulgaris) hypocotyls. Phytopathology 99:37–42

    Article  Google Scholar 

  • Gent DH, Lang JM, Schwartz HF (2005) Epiphytic survival of Xanthomonas axonopodis pv. allii and X. axonopodis pv. phaseoli on leguminous hosts and onion. Plant Dis 89:558–564

    Article  PubMed  Google Scholar 

  • Gevens AJ, Donahoo RS, Lamour KH, Hausbeck MK (2007) Characterization of Phytophthora capsica from Michigan surface irrigation water. Phytopathology 97:421–428

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson RL, Rand RE, Hagedorn DJ (1990) Survival of Xanthomonas campestris pv. phaseoli and pectolytic strains of X. campestris in bean debris. Plant Dis 74:322–327

    Article  Google Scholar 

  • Gill HK, McSorley RT (2017) Cover crops for managing root-knot nematodes. ENY063. USDA, University of Florida Extension Service, University of Florida https://edis.ifas.ufl.edu/in892#:~:text=Summer%20Cover%20Crops,knot%20populations%20at%20lower%20levels

  • Gorny AM, Kikkert JR, Dunn AR, Dillard HR, Smart CD, Pethybridge SJ (2015) Tan spot of lima bean caused by Boeremia exigua in New York State. Can J Plant Pathol 37:523–528. https://doi.org/10.1080/07060661.2015.1105873

    Article  CAS  Google Scholar 

  • Gorny AM, Kikkert JR, Shivas RG, Pethybridge SJ (2016) First report of Didymella americana on lima bean (Phaseolus lunatus). Can J Plant Pathol 38:389–394. https://doi.org/10.1080/07060661.2016.1195877

    Article  Google Scholar 

  • Granke LL, Quesada-Ocampo L, Lamour K, Hausbeck MK (2012) Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Dis 95:1588–1600

    Article  Google Scholar 

  • Gutiérrez Salgado A, Gepts AP, Debouck DG (1995) Evidence for two gene pools of the lima bean, Phaseolus lunatus L., in the Americas. Genet Resour Crop Evol 42:15–28

    Article  Google Scholar 

  • Hagan A, Smith K, Sikora E (2021) Soil solarization for control of nematodes and soilborne diseases. ANR-0713, Alabama Cooperative Extension System https://www.aces.edu/wp-content/uploads/2018/09/ANR-0713_SoilSolarization_030918.pdf

  • Hampton RO (1975) The nature of bean yield reduction by bean yellow and bean common mosaic virus. Phytopathology 65:1342–1346

    Article  Google Scholar 

  • Hanson LE (2005) Rhizoctonia root rot. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 19–20

    Google Scholar 

  • Harveson RM (2005) Pythium diseases. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 17–19

    Google Scholar 

  • Harveson RM (2019) Improving yields and managing dry bean bacterial diseases in Nebraska with new-copper-alternative chemicals. Plant Health Progress. https://doi.org/10.1094/PHP-08-18-0047-RS

  • Harveson RM, Schwartz HF (2007) Bacterial diseases of dry edible beans in the central high plains. Plant Health Progress. https://doi.org/10.1094/PHP-2007-0125-01-DG

  • Harveson RM, Yuen G (2005) Fusarium root rot. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 13–15

    Google Scholar 

  • Harveson RM, Smith JA, Stroup WW (2005) Improving root health and yield of dry beans in the Nebraska panhandle with a new technique for reducing soil compaction. Plant Dis 89:279–284

    Article  CAS  PubMed  Google Scholar 

  • Hausbeck M, Lamour K (2004) Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis 88:1292–1303

    Article  PubMed  Google Scholar 

  • Hillnhütter C, Schweizer A, Kühnhold V, Sikora RA (2010) Remote sensing for the detection of soil-borne plant parasitic nematodes and fungal pathogens. In: Oerke EC, Gerhards R, Menz G, Sikora RA (eds) Precision crop protection – the challenge and use of heterogeneity. Springer, The Netherlands, pp 151–165

    Chapter  Google Scholar 

  • Howard RJ, Garland JA, Lloyd WL (1994) Bean. In: Howard RJ, Garland JA, Seaman WL (eds) Diseases and pests of vegetable crops in Canada. The Canadian Phytopathological Society and the Entomological Society of Canada, Ontario, pp 211–223

    Google Scholar 

  • Ishimaru C, Mohan SK, Franc GD (2005a) Common bacterial blight. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 47–49

    Google Scholar 

  • Ishimaru C, Mohan SK, Franc GD (2005b) Halo blight. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 49–50

    Google Scholar 

  • Ishimaru C, Mohan SK, Franc GD (2005c) Bacterial brown spot. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 46–47

    Google Scholar 

  • Jagdale G, Davis R, Bertrand P, Gay JD, Baird R, Padgett GB, Brown EA, Hendrix FF, Balsdon JA (2013) Guide to interpreting nematode assay results. Circular 834, The University of Georgia Cooperative Extension, pp 16

    Google Scholar 

  • Jarvis WR (1980) Epidemiology. In: Coley-Smith JR, Verhoff K, Jarvis WR (eds) The biology of Botrytis. Academic Press, New York, p 317

    Google Scholar 

  • Ji P, Kone D, Yin J, Jackson K, Csinos A (2011) Soil amendments with Brassica cover crops for management of Phytophthora blight on squash. Pest Manag Sci 68:639–644

    Article  PubMed  Google Scholar 

  • Joalland S, Screpanti C, Varella HV, Reuther M, Schwind M (2018) Aerial and ground based sensing of tolerance to beet cyst nematode in sugar beet. Remote Sens 10:1–21

    Article  Google Scholar 

  • Johnson KB, Powelson ML (1983) Influence of prebloom disease established by Botrytis cinerea and environmental and host factors on gray mold pod rot of snap beans. Plant Dis 67:1198–1202

    Article  Google Scholar 

  • Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-Lopez R, Palomeres-Rius JE, Wesemael WML, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961. https://doi.org/10.1111/mpp.12057

    Article  PubMed  PubMed Central  Google Scholar 

  • Keinath AP (2019) Managing Phytophthora capsici diseases on vegetables. Clemson Cooperative Extension, Land-Grant Press by Clemson Extension; 2019 Aug. LGP 1014. http://lgpress.clemson.edu/publication/managing-phytophthora-capsici-diseases-on-vegetables/

  • Kelly JD (1997) A review of varietal response to bean common mosaic potyvirus in Phaseolus vulgaris. Plant Var Seeds 10:1–6

    Google Scholar 

  • Kelly JD, Vallejo VA (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39:1196–1207

    Article  CAS  Google Scholar 

  • Kirkpatrick T, Faske T, Robbins B (2014) Nematode management. Arkansas soybean production handbook. University of Arkansas Extension System. MP-197. https://www.uaex.edu/publications/pdf/mp197/chapter10.pdf

  • Kness AA, Kleczewski N, Everts KL (2015) Pod rot of lima bean. University of Delaware Fact Sheet, http://cdn.extension.udel.edu/wp-content/uploads/2015/10/15092237/Pod-Rot-of-Lima-Bean-fact-sheet-3.pdf

  • Kness AA, Johnson G, Everts KL, Evans TA, Donofrio NM, Earnest EG (2016) Managing pod rot of lima bean caused by Phytophthora capsici with fungicides in the mid-Atlantic region. Plant Health Progress 17:130–132

    Article  Google Scholar 

  • Koike ST, Gladders P, Paulus AO (2007) Fabaceae (pea family). In: Koike ST, Gladders P, Paulus AO (eds) Vegetable diseases-a color handbook. Academic Press, Boston, pp 252–295

    Google Scholar 

  • Krueger R, McSorley R (2018) Solarization for pest management in Florida. University of Florida Institute of Food and Agricultural Sciences, Gainesville. http://edis.ifas.ufl.edu/IN824

    Google Scholar 

  • Lamour K, Hausbeck M (2000) Mefenoxam insensitivity and the sexual stage of Phytophthora capsica in Michigan cucurbit fields. Phytopathology 90:398–400

    Article  Google Scholar 

  • Lamour K, Hausbeck M (2003) Effect of crop rotation on the survival of Phytophthora capsici in Michigan. Plant Dis 87:841–845

    Article  CAS  PubMed  Google Scholar 

  • Lamour K, Hausbeck M (2012) The oomycete broad-host-range pathogen Phytophthora capsica. Mol Plant Pathol 13:329–337

    Article  PubMed  Google Scholar 

  • Lehner MS, Pethybridge SJ, Meyer MC, del Ponte EM (2017) Meta-analytic modelling of the incidence-yield and incidence-sclerotial production relationships in soybean white mold epidemics. Plant Pathol 66:460–468

    Article  Google Scholar 

  • Long R, Temple S, Meyer R, Schwankl L, Godfrey L, Canevari M, Roberts P, Gepts P (2014) Lima bean production in California. University of California Division of Agriculture and Natural Resources Publication 8505, 24 pp

    Google Scholar 

  • Lumsden RD, Ayers WA, Adam PB, Dow RL, Lewis JA, Papavizas GC, Kantzes JG (1976) Ecology and epidemiology of Pythium species in field soil. Phytopathology 66:1203–1209

    Article  Google Scholar 

  • Mahuku GS, Riasco JJ (2004) Virulence and molecular diversity within Colletotrichum lindemuthianum isolates from Andean and Mesoamerican bean varieties and regions. Eur J Plant Pathol 110:253–263

    Article  CAS  Google Scholar 

  • McCarter JP (2008) Nematology: terre incognita no more. Nat Biotechnol 26:882–884. https://doi.org/10.1038/nbt0808-882

    Article  CAS  PubMed  Google Scholar 

  • Mitkowski NA, Abawi GS (2011) Root-knot nematodes. The Plant Health Instructor. American Phytopathological Society, St. Paul. https://doi.org/10.1094/PHI-I-2003-0917-01

    Book  Google Scholar 

  • Moens M, Perry RN, Starr JL (2009) Meloidogynes species- a diverse group of novel and important plant parasites. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI North American Office, Cambridge, MA, pp 1–13

    Google Scholar 

  • Mohan SK, Hagedorn DJ (1989) Additional bacterial diseases. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics, 2nd edn. Centro International de Agricultura Tropical, Cali, Columbia, pp 303–319

    Google Scholar 

  • Morales FJ (2005a) Bean common mosaic. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 60–62

    Google Scholar 

  • Morales FJ (2005b) Bean yellow mosaic. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 73–74

    Google Scholar 

  • Mueller DS, Dorrance AE, Derksen RC, Ozkan E, Kurle JE, Grau CR, Gaska JM, Hartman GL, Bradley CA, Pedersen WL (2002) Efficacy of fungicide on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybeans. Plant Dis 86:26–31

    Article  CAS  PubMed  Google Scholar 

  • Mullen J (2001) Southern blight, southern stem blight, white mold. APSnet http://www.apsnet.org/edcenter/intropp/lessons/fungi/Basidiomycetes/Pages/SouthernBlight.aspx

  • Nienhuis J, Tivang J, Skroch P (1995) Genetic relationships among cultivars and landraces of lima bean (Phaseolus lunatus L.) as measured by RAPD markers. J Am Soc Hortic 120:300–306

    Article  Google Scholar 

  • Noling J (2016) Nematode Management in Beans and Peas (Bush Beans, Pole Beans, Lima Beans, Southern Peas, English Peas, Chinese or Snow Peas). University of Florida Extension Service, University of Florida, ENY-020, 9 pp

    Google Scholar 

  • Otto-Hanson L, Steadman JR, Higgins R, Eskridge KM (2011) Variation in Sclerotinia sclerotiorum bean isolates from multisite resistance screening locations. Plant Dis 95:1370–1377

    Article  PubMed  Google Scholar 

  • Pastor-Corrales MA (2005) Anthracnose. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul MN, pp 25–27

    Google Scholar 

  • Patel PN, Walker JC, Hagedorn DJ, Garcia CD, Teliz-Ortiz (1964) Bacterial brown spot of bean in central Wisconsin. Plant Dis Rep 48:335–337

    Google Scholar 

  • Peltier AJ, Bradley CA, Chilvers MI, Malvick DK, Mueller DS, Wise KA, Esker PD (2012) Biology, yield loss and control of Sclerotinia stem rot of soybean. J Integr Pest Manag 3:B1–B7

    Article  Google Scholar 

  • Pethybridge SJ, Hay FS, Gorny A, Kikkert JR (2018) Spatiotemporal attributes and crop loss associated with tan spot epidemics in baby Lima Bean in New York. Plant Dis 102:405–412

    Article  PubMed  Google Scholar 

  • Pieczarka DJ, Abawi GS (1978) Effect of interaction between Fusarium, Pythium, and Rhizoctonia on severity of bean root rot. Phytopathology 68:403–408

    Article  Google Scholar 

  • Polach FJ, Abawi GS (1975) The occurrence and biology of Botryotinia fuckeliana on beans in New York. Phytopathology 65:657–660

    Article  Google Scholar 

  • Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsii. Annu Rev Phytopathol 23:97–127

    Article  CAS  Google Scholar 

  • Ramirez-Villegas J, Khoury C, Jarvis A, Debouck DG, Luigi G (2010) A gap analysis methodology for collecting crop gene pools: a case study with Phaleolus beans. PLoS One 5:e13497

    Article  PubMed  PubMed Central  Google Scholar 

  • Rico A, Lopez R, Asenio C, Aizpun MT, Asenio S, Manzanera ML, Murillo J (2003) Nontoxigenic strains of Pseudomonas syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods. Phytopathology 93:1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Ristaino JB, Larkin RP, Campbell CL (1993) Spatial and temporal dynamics of Phytophthora epidemics in commercial bell pepper fields. Phytopathology 83:1312–1320

    Article  Google Scholar 

  • Saindon G, Huang HC, Kozub GC, Mundel HH, Kemp G (1993) Incidence of white mold and yield of upright bean grown in different planting patterns. J Phytopathol 137:118–124

    Article  Google Scholar 

  • Saindon G, Huang HC, Kozub GC (1995) White mold avoidance and agronomic attributes of upright common beans grown at multiple planting densities in narrow rows. J Am Soc Hortic 120:843–847

    Article  Google Scholar 

  • Santamaria L, Emmalea G, Ernest EG, Gregory NF, Evans TA (2018) Inheritance of resistance in Lima Bean to Phytophthora phaseoli, the causal agent of downy mildew of Lima Bean. HortScience. https://doi.org/10.21273/HORTSCI12748-18

  • Sasser JN, Carter CC (1985) An advanced treatise on Meloidogyne. Vol. 1: Biology and control. North Carolina State University Graphics, Raleigh

    Google Scholar 

  • Schwartz HF (1989) Halo blight. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics, 2nd edn. Centro International de Agricultura Tropical, Cali, Columbia, pp 285–301

    Google Scholar 

  • Schwartz HF (2005) Downy Mildew. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. St. Paul, American Phytopathological Society, pp 33–34

    Google Scholar 

  • Schwartz HF (2011) Bacterial diseases of beans. Colorado State University Extension Fact Sheet No. 2.913

    Google Scholar 

  • Schwartz HF, Steadman JR, Hall R, Forster RL (2005) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul MN

    Google Scholar 

  • Shah MM, Mahamood M (2017) Nematology – concepts, diagnosis and control. Intech, Rijeka

    Book  Google Scholar 

  • Shah DA, Dillard HR, Cobb A (2002) Alternatives to Vinclozolin (Ronilan) for controlling gray and white mold on snap bean pods in New York. Plant Health Progress. https://doi.org/10.1094/PHP-2002-0923-01-RS

  • Sikora EJ, Conner K (2019) Collecting soil and root samples for nematode analysis. ANR-0114, Alabama Cooperative Extension System

    Google Scholar 

  • Sikora RA, Coyne D, Hallmann J, Timper P (2018a) Plant parasitic nematodes in subtropical and tropical agriculture, 3rd edn. CABI, Boston

    Book  Google Scholar 

  • Sikora RA, Claudius-Cole B, Sikora EJ (2018b) Nematode parasites of food legumes. In: Sikora RA, Coyne D, Hallmann J, Timper P (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 3rd edn. CABI International, Boston, pp 290–345

    Chapter  Google Scholar 

  • Singh SP, Munoz CG (1999) Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci 39:80–89

    Article  Google Scholar 

  • Singh S, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50:2199–2223

    Article  Google Scholar 

  • Smith D, Bradley C, Chilvers M, Esker P, Malvick D, Mueller D, Peltier A, Sisson A, Wise K, Tenuta A, Faske T (2019) An overview of white mold. CPN-1005, Crop Protection Network. https://doi.org/10.31274/cpn-20190620-030

  • Sneh B, Burpee L, Ogashi A (1991) Identification of Rhizoctonia species. American Phytopathological Society, St. Pail

    Google Scholar 

  • Steadman JR (1979) Control of plant diseases caused by Sclerotinia species. Phytopathology 69:904–907

    Article  CAS  Google Scholar 

  • Steadman JR (1983) White mold – a serious yield-limiting disease of bean. Plant Dis 67:346–350

    Article  Google Scholar 

  • Steadman JR, Boland G (2005) White Mold. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, pp 44–46

    Google Scholar 

  • Subbarao KV, Koike ST, Hubbard JC (1996) Effects of deep plowing on the distribution and density of Sclerotium minor sclerotia and lettuce drop. Plant Dis 80:28–33

    Article  Google Scholar 

  • Sumner DR (2005) Southern blight. In: Schwartz HF, Steadman JR, Hall R, Forster RL (eds) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul MN, pp 20–21

    Google Scholar 

  • Swiader JM, Ware GW (2002) Garden beans – snap beans, Lima Beans, and other beans. In: Swader JM, Ware GW (eds) Producing vegetable crops, 5th edn. Interstate Publishers, Inc., Danville, pp 245–266

    Google Scholar 

  • Taylor JD, Phelps K, Dudley CL (1979) Epidemiology and strategy for the control of halo-blight of beans. Ann Appl Biol 93:167–172

    Article  Google Scholar 

  • Tu JC (1983) Epidemiology of anthracnose cause by Colletotrichum lindemuthianum isolated on white bean in southern Ontario: survival of the pathogen. Plant Dis 67:402–404

    Article  Google Scholar 

  • Tu JC, Tan CS (1991) Effect of soil compaction on growth, yield and root rots of white beans in clay loam and sandy loam soil. Soil Biol Biochem 23:233–238

    Article  Google Scholar 

  • USDA-NASS Agricultural Statistics (2021) Vegetable 2020 summary. USDA, National Agricultural Statistics Service, p 98

    Google Scholar 

  • Van Bruggen AHC, Whalen CG, Arneson PA (1996) Emergence, growth, and development of dry bean seedlings in response to temperature, soil moisture, and Rhizoctonia solani. Phytopathology 76:568–572

    Google Scholar 

  • Vieira RF, Paula Junior TJ, Teixeira H (2010) White mold management in common bean by increasing within-row distance between plants. Plant Dis 94:361–367

    Article  CAS  PubMed  Google Scholar 

  • Walker JC (1952) Downy mildew of lima bean. In: Diseases of vegetable crops. McGraw-Hill Book Company, Inc., New York, p 529

    Google Scholar 

  • Walker JC, Patel PN (1964) Splash dispersal and wind as factors in epidemiology of halo blight of bean. Phytopathology 54:140–141

    Google Scholar 

  • Wegulo SN, Sun P, Martinson CA, Yang XB (2000) Spread of Sclerotinia stem rot of soybean from area and point sources of apothecial inoculum. Can J Plant Sci 80:389–402. https://doi.org/10.4141/P99-015

    Article  Google Scholar 

  • Wester RE, Goth RW, Drechsler C (1966) Overwintering of Phytophthora phaseoli. Phytopathology 56:95–97

    Google Scholar 

  • Williams JR, Stelfox D (1980) Influence of farming practices in Alberta on germination and production of Sclerotinia sclerotiorum. Can J Plant Sci 2:169–172

    Google Scholar 

  • Wohleb CH, du Toit L (2011) Common bacterial blight and halo blight: two bacterial diseases of phytosanitary significance for bean crops in Washington State. Washington State University Extension Fact Sheet FS038E

    Google Scholar 

  • Wyenandt A, van Vuuren M, Kuhar T, Hamilton G, Van Gessel M, Johnson G (2020) Mid-Atlantic commercial vegetable production recommendations, 2020/2021. Rutgers NJAES Cooperative Extension, p 438

    Google Scholar 

  • Xie C, Vallad G (2016) Integrated Management of Southern Blight in vegetable production. University of Florida Institute of Food and Agricultural Sciences, Gainesville. https://edis.ifas.ufl.edu/publication/PP272

    Google Scholar 

  • Xu Z, Gleason ML, Mueller DS, Esker PD, Bradley CA, Buck JW, Benson DM, Dixon PM, Monteiro JFBA (2008) Overwintering in Sclerotium rolfsii and S. rolfsii var. delphinii in different latitudes of the United States. Plant Dis 92:719–724

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Sikora .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sikora, E.J. (2022). Diseases of Lima Bean. In: Elmer, W.H., McGrath, M., McGovern, R.J. (eds) Handbook of Vegetable and Herb Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-030-35512-8_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35512-8_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35512-8

  • Online ISBN: 978-3-030-35512-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diseases of Lima Bean
    Published:
    07 December 2023

    DOI: https://doi.org/10.1007/978-3-030-35512-8_22-2

  2. Original

    Diseases of Lima Bean
    Published:
    21 March 2023

    DOI: https://doi.org/10.1007/978-3-030-35512-8_22-1