Skip to main content

Anti-inflammatory Components from Functional Foods for Obesity

  • Chapter
  • First Online:
Pathophysiology of Obesity-Induced Health Complications

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 19))

  • 1138 Accesses

Abstract

Obesity, defined as excessive fat accumulation that may impair health, has been described throughout human history, but it has now reached epidemic proportions with the WHO estimating that 39% of the world’s adults over 18 years of age were overweight or obese in 2016. Obesity is a chronic low-grade inflammatory state leading to organ damage with an increased risk of common diseases including cardiovascular and metabolic disease, non-alcoholic fatty liver disease, osteo-arthritis and some cancers. This inflammatory state may be influenced by adipose tissue hypoxia and changes in the gut microbiota. There has been an increasing focus on functional foods and nutraceuticals as treatment options for obesity as drug treatments are limited in efficacy. This chapter summarises the importance of anthocyanin-containing fruits and vegetables, coffee and its components, tropical fruit and food waste as sources of phytochemicals for obesity treatment. We emphasise that preclinical studies can form the basis for clinical trials to determine the effectiveness of these treatments in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organisation (2018) Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

  2. Meldrum DR, Morris MA, Gambone JC (2017) Obesity pandemic: causes, consequences, and solutions-but do we have the will? Fertil Steril 107:833–839

    Article  PubMed  Google Scholar 

  3. Haslam D (2007) Obesity: a medical history. Obes Rev 8(Suppl 1):31–36

    Article  PubMed  Google Scholar 

  4. Michalopoulos A, Tzelepis G, Geroulanos S (2003) Morbid obesity and hypersomnolence in several members of an ancient royal family. Thorax 58:281–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Papavramidou N, Christopoulou-Aletra H (2007) Greco-Roman and Byzantine views on obesity. Obes Surg 17:112–116

    Article  PubMed  Google Scholar 

  6. Ferrucci L, Studenski SA, Alley DE et al (2010) Obesity in aging and art. J Gerontol A Biol Sci Med Sci 65:53–56

    Article  PubMed  Google Scholar 

  7. Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:766–781

    Article  PubMed  PubMed Central  Google Scholar 

  8. NCD Risk Factor Collaboration (NCD-RisC) (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387:1377–1396

    Google Scholar 

  9. NCD Risk Factor Collaboration (NCD-RisC) (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390:2627–2642

    Google Scholar 

  10. Smith GD (2016) A fatter, healthier but more unequal world. Lancet 387:1349–1350

    Article  PubMed  Google Scholar 

  11. The GBD 2015 Obesity Collaborators (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377:13–27

    Google Scholar 

  12. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185

    Article  CAS  PubMed  Google Scholar 

  13. Ortega FB, Lavie CJ, Blair SN (2016) Obesity and cardiovascular disease. Circ Res 118:1752–1770

    Article  CAS  PubMed  Google Scholar 

  14. Verma S, Hussain ME (2017) Obesity and diabetes: an update. Diabetes Metab Syndr 11:73–79

    Article  PubMed  Google Scholar 

  15. Lim S, Taskinen MR, Boren J (2019) Crosstalk between nonalcoholic fatty liver disease and cardiometabolic syndrome. Obes Rev 20:599–611

    Article  PubMed  Google Scholar 

  16. Garg SK, Maurer H, Reed K, Selagamsetty R (2014) Diabetes and cancer: two diseases with obesity as a common risk factor. Diabetes Obes Metab 16:97–110

    Article  CAS  PubMed  Google Scholar 

  17. Tu C, He J, Wu B et al (2019) An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis. Cytokine 113:1–12

    Article  CAS  PubMed  Google Scholar 

  18. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    Article  CAS  PubMed  Google Scholar 

  19. Karczewski J, Sledzinska E, Baturo A et al (2018) Obesity and inflammation. Eur Cytokine Netw 29:83–94

    CAS  PubMed  Google Scholar 

  20. Iyer A, Brown L, Whitehead JP et al (2015) Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease. FASEB J 29:3612–3625

    Article  CAS  PubMed  Google Scholar 

  21. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8:51

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI et al (2019) Diet, gut microbiota, and obesity: Links with host genetics and epigenetics and potential applications. Adv Nutr 10:S17–S30

    Article  PubMed  PubMed Central  Google Scholar 

  24. Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF (2017) The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol 2:747–756

    Article  PubMed  Google Scholar 

  25. Requena T, Martinez-Cuesta MC, Pelaez C (2018) Diet and microbiota linked in health and disease. Food Funct 9:688–704

    Article  CAS  PubMed  Google Scholar 

  26. Cox AJ, West NP, Cripps AW (2015) Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3:207–215

    Article  CAS  PubMed  Google Scholar 

  27. Hamilton MK, Raybould HE (2016) Bugs, guts and brains, and the regulation of food intake and body weight. Int J Obes Suppl 6(Suppl 1):S8–S14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van de Wouw M, Schellekens H, Dinan TG, Cryan JF (2017) Microbiota-gut-brain axis: modulator of host metabolism and appetite. J Nutr 147:727–745

    Article  PubMed  CAS  Google Scholar 

  29. Choque Delgado GT, Tamashiro W (2018) Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res Int 113:183–188

    Article  CAS  PubMed  Google Scholar 

  30. Hersoug LG, Moller P, Loft S (2016) Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev 17:297–312

    Article  CAS  PubMed  Google Scholar 

  31. Hersoug LG, Moller P, Loft S (2018) Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr Res Rev 31:153–163

    Article  CAS  PubMed  Google Scholar 

  32. Belizario JE, Faintuch J, Garay-Malpartida M (2018) Gut microbiome dysbiosis and immunometabolism: new frontiers for treatment of metabolic diseases. Mediators Inflamm 2018:2037838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sunkara T, Rawla P, Ofosu A, Gaduputi V (2018) Fecal microbiota transplant: a new frontier in inflammatory bowel disease. J Inflamm Res 11:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Groot PF, Frissen MN, de Clercq NC, Nieuwdorp M (2017) Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes 8:253–267

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bouter KE, van Raalte DH, Groen AK, Nieuwdorp M (2017) Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology 152:1671–1678

    Article  CAS  PubMed  Google Scholar 

  36. Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    Article  PubMed  CAS  Google Scholar 

  37. Lee P, Yacyshyn BR, Yacyshyn MB (2019) Gut microbiota and obesity: an opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes Obes Metab 21:479–490

    Article  PubMed  Google Scholar 

  38. Mokhtari Z, Gibson DL, Hekmatdoost A (2017) Nonalcoholic fatty liver disease, the gut microbiome, and diet. Adv Nutr 8:240–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Milosevic I, Vujovic A, Barac A et al (2019) Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature. Int J Mol Sci 20:395

    Article  PubMed Central  CAS  Google Scholar 

  40. Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93:1–21

    Article  CAS  PubMed  Google Scholar 

  41. Trayhurn P (2019) Oxygen: a critical, but overlooked, nutrient. Front Nutr 6:10

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gaspar JM, Velloso LA (2018) Hypoxia inducible factor as a central regulator of metabolism - implications for the development of obesity. Front Neurosci 12:813

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gonzalez FJ, Xie C, Jiang C (2018) The role of hypoxia-inducible factors in metabolic diseases. Nat Rev Endocrinol 15:21–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jung UJ, Choi MS (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15:6184–6223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kayser B, Verges S (2013) Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes Rev 14:579–592

    Article  CAS  PubMed  Google Scholar 

  46. Park HY, Jung WS, Kim J, Lim K (2019) Twelve weeks of exercise modality in hypoxia enhances health-related function in obese older Korean men: a randomized controlled trial. Geriatr Gerontol Int 19:311–316

    Article  Google Scholar 

  47. Muller TD, Clemmensen C, Finan B et al (2018) Anti-obesity therapy: from rainbow pills to polyagonists. Pharmacol Rev 70:712–746

    Article  CAS  PubMed  Google Scholar 

  48. Brown L, Poudyal H, Panchal SK (2015) Functional foods as potential therapeutic options for metabolic syndrome. Obes Rev 16:914–941

    Article  CAS  PubMed  Google Scholar 

  49. Tsai YL, Lin TL, Chang CJ et al (2019) Probiotics, prebiotics and amelioration of diseases. J Biomed Sci 26:3

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lim J, Iyer A, Liu L et al (2013) Diet-induced obesity, adipose inflammation, and metabolic dysfunction correlating with PAR2 expression are attenuated by PAR2 antagonism. FASEB J 27:4757–4767

    Article  CAS  PubMed  Google Scholar 

  51. Lim J, Iyer A, Suen JY et al (2013) C5aR and C3aR antagonists each inhibit diet-induced obesity, metabolic dysfunction, and adipocyte and macrophage signaling. FASEB J 27:822–831

    Article  CAS  PubMed  Google Scholar 

  52. Iyer A, Lim J, Poudyal H et al (2012) An inhibitor of phospholipase A2 group IIA modulates adipocyte signaling and protects against diet-induced metabolic syndrome in rats. Diabetes 61:2320–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ozen AE, Pons A, Tur JA (2012) Worldwide consumption of functional foods: a systematic review. Nutr Rev 70:472–481

    Article  PubMed  Google Scholar 

  54. John OD, Brown L, Panchal SK (2019) Chapter 3. Garcinia fruits: their potential to combat metabolic syndrome. In: Ullah M, Ahmad A (eds) Nutraceuticals and natural product derivatives: disease prevention and drug discovery. Wiley-Blackwell, Hoboken, NJ, USA, pp 39–80

    Google Scholar 

  55. Panchal SK, Brown L (2011) Rodent models for metabolic syndrome research. J Biomed Biotechnol 2011:351982

    Article  PubMed  Google Scholar 

  56. Kleinert M, Clemmensen C, Hofmann SM et al (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14:140–162

    Article  PubMed  Google Scholar 

  57. Rios-Hoyo A, Gutierrez-Salmean G (2016) New dietary supplements for obesity: what we currently know. Curr Obes Rep 5:262–270

    Article  PubMed  Google Scholar 

  58. Zaynab M, Fatima M, Abbas S et al (2018) Role of secondary metabolites in plant defense against pathogens. Microb Pathog 124:198–202

    Article  CAS  PubMed  Google Scholar 

  59. Liang J, He J (2018) Protective role of anthocyanins in plants under low nitrogen stress. Biochem Biophys Res Commun 498:946–953

    Article  CAS  PubMed  Google Scholar 

  60. Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361

    Article  CAS  PubMed  Google Scholar 

  61. Gould KS (2004) Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 2004:314–320

    Google Scholar 

  62. Riaz M, Zia-Ul-Haq M, Saad B (2016) The role of anthocyanins in obesity and diabetes. In: Riaz M, Saad B (eds) Anthocyanins and human health: biomolecular and therapeutic aspects, Zia Ul Haq, M. Springer International Publishing, Cham, pp 109–123

    Google Scholar 

  63. Azzini E, Giacometti J, Russo GL (2017) Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxid Med Cell Longev 2017:2740364

    PubMed  PubMed Central  Google Scholar 

  64. Lee Y-M, Yoon Y, Yoon H et al (2017) Dietary anthocyanins against obesity and inflammation. Nutrients 9:1089

    Article  PubMed Central  CAS  Google Scholar 

  65. Naseri R, Farzaei F, Haratipour P et al (2018) Anthocyanins in the management of metabolic syndrome: a pharmacological and biopharmaceutical review. Front Pharmacol 9:1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xie L, Su H, Sun C et al (2018) Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends Food Sci Technol 72:13–24

    Article  CAS  Google Scholar 

  67. Wu T, Gao Y, Guo X et al (2018) Blackberry and blueberry anthocyanin supplementation counteract high-fat-diet-induced obesity by alleviating oxidative stress and inflammation and accelerating energy expenditure. Oxid Med Cell Longev 2018:4051232

    PubMed  PubMed Central  Google Scholar 

  68. Bhaswant M, Shafie SR, Mathai ML et al (2017) Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition 41:24–31

    Article  CAS  PubMed  Google Scholar 

  69. Kim N-H, Jegal J, Kim YN et al (2018) Antiobesity effect of fermented chokeberry extract in high-fat diet-induced obese mice. J Med Food 21:1113–1119

    Article  CAS  PubMed  Google Scholar 

  70. Bhaswant M, Fanning K, Netzel M et al (2015) Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacol Res 102:208–217

    Article  CAS  PubMed  Google Scholar 

  71. John OD, Mouatt P, Prasadam I et al (2019) The edible native Australian fruit, Davidson’s plum (Davidsonia pruriens), reduces symptoms in rats with diet-induced metabolic syndrome. J Funct Foods 56:204–215

    Article  CAS  Google Scholar 

  72. Daveri E, Cremonini E, Mastaloudis A et al (2018) Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol 18:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Furuuchi R, Shimizu I, Yoshida Y et al (2018) Boysenberry polyphenol inhibits endothelial dysfunction and improves vascular health. PLoS ONE 13:e0202051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Parra-Vargas M, Sandoval-Rodriguez A, Rodriguez-Echevarria R et al (2018) Delphinidin ameliorates hepatic triglyceride accumulation in human HepG2 cells, but not in diet-induced obese mice. Nutrients 10:1060

    Article  PubMed Central  CAS  Google Scholar 

  75. Lee S, Keirsey KI, Kirkland R et al (2018) Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. J Nutr 148:209–219

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jiang X, Li X, Zhu C et al (2018) The target cells of anthocyanins in metabolic syndrome. Crit Rev Food Sci Nutr 59:921-946

    Article  PubMed  CAS  Google Scholar 

  77. Igwe EO, Charlton KE, Roodenrys S et al (2017) Anthocyanin-rich plum juice reduces ambulatory blood pressure but not acute cognitive function in younger and older adults: a pilot crossover dose-timing study. Nutr Res 47:28–43

    Article  CAS  PubMed  Google Scholar 

  78. Bhaswant M, Brown L, Mathai ML (2019) Queen Garnet plum juice and raspberry cordial in mildly hypertensive obese or overweight subjects: a randomized, double-blind study. J Funct Foods 56:119–126

    Article  CAS  Google Scholar 

  79. Hester SN, Mastaloudis A, Gray R et al (2018) Efficacy of an anthocyanin and prebiotic blend on intestinal environment in obese male and female subjects. J Nutr Metab 2018:7497260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Solverson PM, Rumpler WV, Leger JL et al (2018) Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients 10:1048

    Article  PubMed Central  CAS  Google Scholar 

  81. Stull AJ, Cash KC, Johnson WD et al (2010) Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr 140:1764–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cardile V, Graziano AC, Venditti A (2015) Clinical evaluation of Moro (Citrus sinensis (L.) Osbeck) orange juice supplementation for the weight management. Nat Prod Res 29:2256–2260

    Article  CAS  PubMed  Google Scholar 

  83. Saeed M, Naveed M, BiBi J et al (2019) Potential nutraceutical and food additive properties and risks of coffee: a comprehensive overview. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2018.1489368

    Article  PubMed  Google Scholar 

  84. Nieber K (2017) The impact of coffee on health. Planta Med 83:1256–1263

    Article  CAS  PubMed  Google Scholar 

  85. Grosso G, Godos J, Galvano F, Giovannucci EL (2017) Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr 37:131–156

    Article  CAS  PubMed  Google Scholar 

  86. El-Sohemy A (2019) Coffee and health: what we still don’t know. Am J Clin Nutr 109:489–490

    Article  PubMed  Google Scholar 

  87. Izadi V, Larijani B, Azadbakht L (2018) Is coffee and green tea consumption related to serum levels of adiponectin and leptin? Int J Prev Med 9:106

    Article  PubMed  PubMed Central  Google Scholar 

  88. Panchal SK, Poudyal H, Waanders J, Brown L (2012) Coffee extract attenuates changes in cardiovascular and hepatic structure and function without decreasing obesity in high-carbohydrate, high-fat diet-fed male rats. J Nutr 142:690–697

    Article  CAS  PubMed  Google Scholar 

  89. Panchal SK, Wong WY, Kauter K et al (2012) Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition 28:1055–1062

    Article  CAS  PubMed  Google Scholar 

  90. Nakazawa Y, Ishimori N, Oguchi J et al (2019) Coffee brew intake can prevent the reduction of lens glutathione and ascorbic acid levels in HFD-fed animals. Exp Ther Med 17:1420–1425

    CAS  PubMed  Google Scholar 

  91. Nishitsuji K, Watanabe S, Xiao J et al (2018) Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci Rep 8:16173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Choi BK, Park SB, Lee DR et al (2016) Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pac J Trop Med 9:635–643

    Article  CAS  PubMed  Google Scholar 

  93. Song SJ, Choi S, Park T (2014) Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice. Evid Based Complement Alternat Med 2014:718379

    PubMed  PubMed Central  Google Scholar 

  94. Bhandarkar NS, Brown L, Panchal SK (2019) Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats. Nutr Res 62:78–88

    Article  CAS  PubMed  Google Scholar 

  95. Ma Y, Gao M, Liu D (2015) Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice. Pharm Res 32:1200–1209

    Article  CAS  PubMed  Google Scholar 

  96. Pan MH, Tung YC, Yang G et al (2016) Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food Funct 7:4481–4491

    Article  CAS  PubMed  Google Scholar 

  97. Kim Y, Je Y (2018) Moderate coffee consumption is inversely associated with the metabolic syndrome in the Korean adult population. Br J Nutr 120:1279–1287

    Article  CAS  PubMed  Google Scholar 

  98. Larsen SC, Mikkelsen ML, Frederiksen P, Heitmann BL (2018) Habitual coffee consumption and changes in measures of adiposity: a comprehensive study of longitudinal associations. Int J Obes (Lond) 42:880–886

    Article  CAS  Google Scholar 

  99. Roshan H, Nikpayam O, Sedaghat M, Sohrab G (2018) Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial. Br J Nutr 119:250–258

    Article  CAS  PubMed  Google Scholar 

  100. Haidari F, Samadi M, Mohammadshahi M et al (2017) Energy restriction combined with green coffee bean extract affects serum adipocytokines and the body composition in obese women. Asia Pac J Clin Nutr 26:1048–1054

    CAS  PubMed  Google Scholar 

  101. Yamagata K (2018) Do coffee polyphenols have a preventive action on metabolic syndrome associated endothelial dysfunctions? An assessment of the current evidence. Antioxidants (Basel) 7: 26

    Article  PubMed Central  CAS  Google Scholar 

  102. O’Keefe JH, DiNicolantonio JJ, Lavie CJ (2018) Coffee for cardioprotection and longevity. Prog Cardiovasc Dis 61:38–42

    Article  PubMed  Google Scholar 

  103. Khoo HE, Azlan A, Kong KW, Ismail A (2016) Phytochemicals and medicinal properties of indigenous tropical fruits with potential for commercial development. Evid Based Complement Alternat Med 2016:7591951

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pierson JT, Dietzgen RG, Shaw PN et al (2012) Major Australian tropical fruits biodiversity: bioactive compounds and their bioactivities. Mol Nutr Food Res 56:357–387

    Article  CAS  PubMed  Google Scholar 

  105. Sweeney PW (2008) Phylogeny and floral diversity in the genus Garcinia (Clusiaceae) and relatives. Int J Plant Sci 169:1288–1303

    Article  Google Scholar 

  106. Deachathai S, Mahabusarakam W, Phongpaichit S, Taylor WC (2005) Phenolic compounds from the fruit of Garcinia dulcis. Phytochemistry 66:2368–2375

    Article  CAS  PubMed  Google Scholar 

  107. Ovalle-Magallanes B, Eugenio-Perez D, Pedraza-Chaverri J (2017) Medicinal properties of mangosteen (Garcinia mangostana L.): a comprehensive update. Food Chem Toxicol 109:102–122

    Article  CAS  PubMed  Google Scholar 

  108. Tousian Shandiz H, Razavi BM, Hosseinzadeh H (2017) Review of Garcinia mangostana and its xanthones in metabolic syndrome and related complications. Phytother Res 31:1173–1182

    Article  CAS  PubMed  Google Scholar 

  109. Lee PS, Teng CY, Kalyanam N et al (2019) Garcinol reduces obesity in high-fat-diet-fed mice by modulating gut microbiota composition. Mol Nutr Food Res 63:e1800390

    Article  PubMed  CAS  Google Scholar 

  110. Tsai SY, Chung PC, Owaga EE et al (2016) Alpha-mangostin from mangosteen (Garcinia mangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis. Nutr Metab (Lond) 13:88

    Google Scholar 

  111. Chae HS, Kim YM, Bae JK et al (2016) Mangosteen extract attenuates the metabolic disorders of high-fat-fed mice by activating AMPK. J Med Food 19:148–154

    Article  PubMed  Google Scholar 

  112. Sripradha R, Magadi SG (2015) Efficacy of Garcinia cambogia on body weight, inflammation and glucose tolerance in high fat fed male wistar rats. J Clin Diagn Res 9:BF01–BF04

    Google Scholar 

  113. Watanabe M, Gangitano E, Francomano D et al (2018) Mangosteen extract shows a potent insulin sensitizing effect in obese female patients: a prospective randomized controlled pilot study. Nutrients 10:586

    Article  PubMed Central  CAS  Google Scholar 

  114. Haber SL, Awwad O, Phillips A et al (2018) Garcinia cambogia for weight loss. Am J Health Syst Pharm 75:17–22

    Article  PubMed  Google Scholar 

  115. A Aziz AN, Mhd Jalil MA (2019) Bioactive compounds, nutritional value, and potential health benefits of indigenous durian (Durio zibethinus Murr.): a review. Foods 8:96

    Article  PubMed Central  CAS  Google Scholar 

  116. Xu J, Liu T, Li Y et al (2019) Jamun (Eugenia jambolana Lam.) fruit extract prevents obesity by modulating the gut microbiome in high-fat-diet-fed mice. Mol Nutr Food Res 63:e1801307

    Google Scholar 

  117. Ulla A, Alam MA, Sikder B et al (2017) Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats. BMC Complement Altern Med 17:289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Food and Agriculture Organization of the United Nations (2018). http://www.fao.org/save-food/resources/keyfindings/en/

  119. Lai WT, Khong NMH, Lim SS et al (2017) A review: modified agricultural by-products for the development and fortification of food products and nutraceuticals. Trends Food Sci Technol 59:148–160

    Article  CAS  Google Scholar 

  120. Frenkel VS, Cummings GA, Maillacheruvu KY, Tang WZ (2017) Food-processing wastes. Water Environ Res 89:1360–1383

    Article  CAS  PubMed  Google Scholar 

  121. John OD, Wanyonyi S, Mouatt P et al (2018) Achacha (Garcinia humilis) rind improves cardiovascular function in rats with diet-induced metabolic syndrome. Nutrients 10:1425

    Article  PubMed Central  CAS  Google Scholar 

  122. Asyifah MR, Lu K, Ting HL, Zhang D (2014) Hidden potential of tropical fruit waste components as a useful source of remedy for obesity. J Agric Food Chem 62:3505–3516

    Article  CAS  PubMed  Google Scholar 

  123. Cheok CY, Mohd Adzahan N, Abdul Rahman R et al (2018) Current trends of tropical fruit waste utilization. Crit Rev Food Sci Nutr 58:335–361

    PubMed  Google Scholar 

  124. Mulvihill EE, Burke AC, Huff MW (2016) Citrus flavonoids as regulators of lipoprotein metabolism and atherosclerosis. Annu Rev Nutr 36:275–299

    Article  CAS  PubMed  Google Scholar 

  125. Mahato N, Sharma K, Sinha M, Cho MH (2018) Citrus waste derived nutra-/pharmaceuticals for health benefits: current trends and future perspectives. J Funct Foods 40:307–316

    Article  CAS  Google Scholar 

  126. Sharma K, Mahato N, Cho MH, Lee YR (2017) Converting citrus wastes into value-added products: economic and environmently friendly approaches. Nutrition 34:29–46

    Article  CAS  PubMed  Google Scholar 

  127. Esparza-Martinez FJ, Miranda-Lopez R, Mata-Sanchez SM, Guzman-Maldonado SH (2016) Extractable and non-extractable phenolics and antioxidant capacity of mandarin waste dried at different temperatures. Plant Foods Hum Nutr 71:294–300

    Article  CAS  PubMed  Google Scholar 

  128. Khanal RC, Howard LR, Rogers TJ et al (2011) Effect of feeding grape pomace on selected metabolic parameters associated with high fructose feeding in growing Sprague-Dawley rats. J Med Food 14:1562–1569

    Article  CAS  PubMed  Google Scholar 

  129. Urquiaga I, D’Acuña S, Pérez D et al (2015) Wine grape pomace flour improves blood pressure, fasting glucose and protein damage in humans: a randomized controlled trial. Biol Res 48:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Woerdeman J, van Poelgeest E, Ket JCF et al (2017) Do grape polyphenols improve metabolic syndrome components? A systematic review. Eur J Clin Nutr 71:1381–1392

    Article  CAS  PubMed  Google Scholar 

  131. Vu HT, Scarlett CJ, Vuong QV (2018) Phenolic compounds within banana peel and their potential uses: a review. J Funct Foods 40:238–248

    Article  CAS  Google Scholar 

  132. Muhlack RA, Potumarthi R, Jeffery DW (2018) Sustainable wineries through waste valorisation: a review of grape marc utilisation for value-added products. Waste Manag 72:99–118

    Article  CAS  PubMed  Google Scholar 

  133. Elkahoui S, Bartley GE, Yokoyama WH, Friedman M (2018) Dietary supplementation of potato peel powders prepared from conventional and organic russet and non-organic gold and red potatoes reduces weight gain in mice on a high-fat diet. J Agric Food Chem 66:6064–6072

    Article  CAS  PubMed  Google Scholar 

  134. Edrisi F, Salehi M, Ahmadi A et al (2018) Effects of supplementation with rice husk powder and rice bran on inflammatory factors in overweight and obese adults following an energy-restricted diet: a randomized controlled trial. Eur J Nutr 57:833–843

    Article  CAS  PubMed  Google Scholar 

  135. Nair S, Gagnon J, Pelletier C et al (2017) Shrimp oil extracted from the shrimp processing waste reduces the development of insulin resistance and metabolic phenotypes in diet-induced obese rats. Appl Physiol Nutr Metab 42:841–849

    Article  CAS  PubMed  Google Scholar 

  136. Brown L, Caligiuri SPB, Brown D, Pierce GN (2018) Clinical trials using functional foods provide unique challenges. J Funct Foods 45:233–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panchal, S.K., Brown, L. (2020). Anti-inflammatory Components from Functional Foods for Obesity. In: Tappia, P., Ramjiawan, B., Dhalla, N. (eds) Pathophysiology of Obesity-Induced Health Complications. Advances in Biochemistry in Health and Disease, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-35358-2_17

Download citation

Publish with us

Policies and ethics