Skip to main content

Adhesive Bonding of Aircraft Structures

  • Chapter
  • First Online:
Revolutionizing Aircraft Materials and Processes

Abstract

In the present chapter, the evolution of adhesive bonding technology in aircraft structures is described. The chapter focuses on materials and processes, while it neglects modeling and structural analysis aspects. Also described in the chapter are the nondestructive methods used to assess the quality of the bondline, the extended nondestructive methods developed to analyze surface contamination and to detect kissing bonds, the main destructive methods used to evaluate the mechanical performance of bonded joints, some design aspects related to the implementation of joining profiles made from advanced composite materials, and the status of research performed toward certification of adhesive bonding for primary composite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RD, Drinkwater BW (1997) Nondestructive testing of adhesively-bonded joints. NDT & E Int 30:93–98

    Article  Google Scholar 

  • BOPACS (2017) (Boltless assembling Of Primary Aerospace Composite Structures) Project’s Public Final Report, Project ID: 314180, Funded under: FP7 TRANSPORT

    Google Scholar 

  • ComBoNDT (2015) (ComBoNDT—Quality assurance concepts for adhesive bonding of aircraft composite structures by advanced NDT) Grant Agreement No. 636494, Funder under H2020

    Google Scholar 

  • da Silva LFM, Dillard DA, Blackman BRK, Adams RD (eds) (2012) Testing of adhesive joints. Wiley-VCH Verlag & Co, Weinheim

    Google Scholar 

  • Davis GD (2011) Surface treatments of selected materials. In: da Silva LFM, Öchsner A, Adams RD (eds) Handbook of adhesion technology. Springer, Berlin. https://doi.org/10.1007/978-3-642-01169-6_8

    Chapter  Google Scholar 

  • ENCOMB (2014) (Extended Non-Destructive Testing of Composite Bonds) Project Final Report—Project ID: 266226. Funded under: FP7-TRANSPORT

    Google Scholar 

  • Floros IS, Tserpes KI, Löbel T (2015) Mode-I, mode-II and mixed-mode I+ II fracture behavior of composite bonded joints: experimental characterization and numerical simulation. Compos Part B 78:459–468

    Article  CAS  Google Scholar 

  • Higgins A (2000) Adhesive bonding of aircraft structures. Int J Adhes Adhes 20:367–376

    Article  CAS  Google Scholar 

  • Katsiropoulos CV, Chamos AN, Tserpes KI, Pantelakis SG (2012) Fracture toughness and shear behavior of composite bonded joints based on a novel aerospace adhesive. Compos Part B 43:240–248

    Article  CAS  Google Scholar 

  • Markatos DN, Tserpes KI, Rau E, Markus S, Ehrhart B, Pantelakis S (2013) The effects of manufacturing-induced and in-service related bonding quality reduction on the mode-I fracture toughness of composite bonded joints for aeronautical applications. Compos Part B 45:556–564

    Article  CAS  Google Scholar 

  • Markatos DN, Tserpes KI, Rau E, Brune K, Pantelakis S (2014) Degradation of mode-I fracture toughness of CFRP bonded joints due to release agent and moisture pre-bond contamination. J Adhes 90:156–117

    Article  CAS  Google Scholar 

  • Michaloudaki M (2005) An approach to quality assurance of structural adhesive joints. Ph.D. Dissertation. Technical University of Munich

    Google Scholar 

  • MOJO (2011) (Modular Joints for Aircraft Composite Structures) Final Report, Project ID: 30871, Funded under: FP6-AEROSPACE

    Google Scholar 

  • Moutsompegka E, Tserpes KI, Polydoropoulou P, Tornow C, Schlag M, Brune K, Mayer B, Pantelakis S (2017) Experimental study of the effect of pre-bond contamination with de-icing fluid and ageing on the fracture toughness of composite bonded joints. Fatigue Fract Eng Mater Struct 40(10):1581–1591

    Article  CAS  Google Scholar 

  • Pantelakis S, Tserpes KI (2014) Adhesive bonding of composite aircraft structures: challenges and recent developments. Sci China Phys Mech Astron 57:2–11

    Article  Google Scholar 

  • Petrie E (1999) Handbook of adhesives and sealants. McGraw Hill Professional, New York

    Google Scholar 

  • Tserpes KI, Koumpias AS (2015) A numerical methodology for optimizing the geometry of composite structural parts with regard to strength. Compos Part B 68:176–184

    Article  Google Scholar 

  • Tserpes KI, Pantelakis S, Kappatos V (2011a) The effect of imperfect bonding on the pull-out behavior of non-crimp fabric Pi-shaped joints. Comput Mater Sci 50:1372–1380

    Article  CAS  Google Scholar 

  • Tserpes KI, Ruzek R, Mezihorak R, Labeas GN, Pantelakis SG (2011b) The structural integrity of a novel composite adhesively bonded flap-track beam. Compos Struct 93:2049–2059

    Article  Google Scholar 

  • Tserpes KI, Ruzek R, Pantelakis S (2012) Strength of Pi shaped non-crimp fabric adhesively bonded joints. Plast Rubber Compos 41:100–106

    Article  CAS  Google Scholar 

  • Tserpes KI, Markatos DN, Brune K, Hoffmann M, Rau E, Pantelakis S (2014) A detailed experimental study of the effects of pre-bond contamination with a hydraulic fluid, thermal degradation, and poor curing on fracture toughness of composite bonded joints. J Adhes Sci Technol 28:1865–1880

    Article  CAS  Google Scholar 

  • Tserpes KI, Peikert G, Floros IS (2016) Crack stopping in composite adhesively bonded joints through corrugation. Theor Appl Fract Mech 83:152–157

    Article  Google Scholar 

  • Wachinger G, Thum C, Llopart L, Maier A, Wehlan H, Stöven T (2009) New trends in CFRP treatment and surface monitoring for automated structural adhesive bonding. In: International conference on composite materials ICCM17, Edinburgh

    Google Scholar 

  • Wernik JM, Meguid SA (2014) On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Mater Des 59:19–32

    Article  CAS  Google Scholar 

  • Zielecki W, Kubit A, TrzepieciÅ„ski T, Narkiewicz U, Czech Z (2017) Impact of multiwall carbon nanotubes on the fatigue strength of adhesive joints. Int J Adhes 73:16–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Tserpes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tserpes, K. (2020). Adhesive Bonding of Aircraft Structures. In: Pantelakis, S., Tserpes, K. (eds) Revolutionizing Aircraft Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-35346-9_12

Download citation

Publish with us

Policies and ethics