Skip to main content

Pathology and Histopathology Evaluations of Biomaterials and Medical Devices

  • Chapter
  • First Online:
Integrated Safety and Risk Assessment for Medical Devices and Combination Products

Abstract

This chapter will focus on pathology- and histopathology-based study interactions that will optimize the study design, tissue collection and preparation, and evaluation, interpretation, and documentation of biologic responses to biomaterials and finished medical devices. Much of provided information is also applicable to pathology and histopathology evaluations of combination products (device and pharmaceutical or biologics) and regenerative medicine products that include engineered or polymer scaffolds. The reader should be familiar with and consult the most recent ISO and country-specific regulatory standards and reviews to ensure regulatory compliance with the pathology components of any study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbondanzo, S. L., Young, V. L., Wei, M. Q., & Miller, F. W. (1999). Silicone gel-filled breast and testicular implant capsules: A histologic and immunophenotypic study. Modern Pathology, 12, 706–713.

    CAS  PubMed  Google Scholar 

  • Adhikari, R., et al. (2008). Biodegradable injectable polyurethanes: Synthesis and evaluation for orthopaedic applications. Biomaterials, 29, 3762–3770.

    Article  CAS  PubMed  Google Scholar 

  • Albl, B., et al. (2016). Tissue sampling guides for porcine biomedical models. Toxicologic Pathology, 44, 414–420.

    Article  PubMed  Google Scholar 

  • Altman, D., Rogers, R. G., Yin, L., Tamussino, K., Ye, W., & Iglesia, C. B. (2018). Cancer risk after Midurethral Sling surgery using polypropylene mesh. Obstetrics and Gynecology, 131, 469–474. https://doi.org/10.1097/aog.0000000000002496.

    Article  PubMed  Google Scholar 

  • Alves, A., Wanket, L., & Metz, A. (2019). Current considerations in medical device pathology. In J.-P Boutrand (Ed.), Biocompatibility and Performance of Medical Devices (2nd ed. pp. 489–543). Cambridge: Elsevier.

    Google Scholar 

  • Amini, A. R., Wallace, J. S., & Nukavarapu, S. P. (2011). Short-term and long-term effects of orthopedic biodegradable implants. Journal of Long-Term Effects of Medical Implants, 21, 93–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Seminars in Immunology, 20, 86–100.

    Article  CAS  PubMed  Google Scholar 

  • Ang, H. Y., Bulluck, H., Wong, P., Venkatraman, S. S., Huang, Y., & Foin, N. (2017). Bioresorbable stents: Current and upcoming bioresorbable technologies. International Journal of Cardiology, 228, 931–939.

    Article  PubMed  Google Scholar 

  • Appel, A. A., Anastasio, M. A., Larson, J. C., & Brey, E. M. (2013). Imaging challenges in biomaterials and tissue engineering. Biomaterials, 34, 6615–6630. https://doi.org/10.1016/j.biomaterials.2013.05.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athanasou, N. (2016). The pathobiology and pathology of aseptic implant failure. Bone & Joint Research, 5, 162–168.

    Article  CAS  Google Scholar 

  • Badylak, S. F. (2015). Host response to biomaterials: The impact of host response on biomaterial selection (1st ed.). San Diego: Academic Press.

    Google Scholar 

  • Baklanov, D. V., Peters, K. G., Seidel, A. L., Taylor, D. A., & Annex, B. H. (2003). Neovascularization in intimal hyperplasia is associated with vein graft failure after coronary artery bypass surgery. Vascular Medicine, 8, 163–167.

    Article  PubMed  Google Scholar 

  • Barbolt, T. A., Odin, M., Léger, M., Kangas, L., Holste, J., & Liu, S. H. (2001). Biocompatibility evaluation of dura mater substitutes in an animal model. Neurological Research, 23, 813–820. https://doi.org/10.1179/016164101101199405.

    Article  CAS  PubMed  Google Scholar 

  • Batniji, R. K., Hutchison, J. L., Dahiya, R., Lam, S. L., & Williams, E. F. (2002). Tissue response to expanded polytetrafluoroethylene and silicone implants in a rabbit model. Archives of Facial Plastic Surgery, 4, 111–113.

    Article  PubMed  Google Scholar 

  • Bauer, T. W. (1996). Identification of orthopaedic wear debris. Journal of Bone and Joint Surgery, 79, 479–483.

    Article  Google Scholar 

  • Becerra, S. C., Roy, D. C., Sanchez, C. J., Christy, R. J., & Burmeister, D. M. (2016). An optimized staining technique for the detection of gram positive and gram negative bacteria within tissue. BMC Research Notes, 9, 216. https://doi.org/10.1186/s13104-016-1902-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergknut, N., et al. (2013). Intervertebral disc disease in dogs–Part 1: A new histological grading scheme for classification of intervertebral disc degeneration in dogs. Veterinary Journal, 195, 156–163.

    Article  CAS  Google Scholar 

  • Bergsma, J., De Bruijn, W., Rozema, F., Bos, R., & Boering, G. (1995a). Late degradation tissue response to poly (L-lactide) bone plates and screws. Biomaterials, 16, 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Bergsma, J. E., Rozema, F., Bos, R., Boering, G., de Bruijn, W., & Pennings, A. (1995b). In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials, 16, 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff, F., & Bryson, G. (1964). Carcinogenesis through solid state surfaces. Progress in Experimental Tumor Research, 5, 85–133.

    Article  CAS  PubMed  Google Scholar 

  • Blanchard, K. T., et al. (1999). Transponder induced sarcoma in the Heterozygous p53+/− mouse. Toxicologic Pathology, 27, 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Bölgen, N., Menceloğlu, Y. Z., Acatay, K., Vargel, I., & Pişkin, E. (2005). In vitro and in vivo degradation of non-woven materials made of poly (ε-caprolactone) nanofibers prepared by electrospinning under different conditions. Journal of Biomaterials Science. Polymer Edition, 16, 1537–1555.

    Article  PubMed  Google Scholar 

  • Boyce, J. T., Boyce, R. W., & Gundersen, H. J. (2010). Choice of morphometric methods and consequences in the regulatory environment. Toxicologic Pathology, 38, 1128–1133.

    Article  PubMed  Google Scholar 

  • Brand, K. G., Buoen, L. C., & Brand, I. (1975a). Foreign-body tumorigenesis induced by glass and smooth and rough plastic. Comparative study of preneoplastic events. Journal of the National Cancer Institute, 55, 319–322.

    CAS  PubMed  Google Scholar 

  • Brand, K. G., Buoen, L. C., Johnson, K. H., & Brand, I. (1975b). Etiological factors, stages, and the role of the foreign body in foreign body tumorigenesis a review. Cancer Research, 35, 279–286.

    CAS  PubMed  Google Scholar 

  • Brewster, D. H., Stockton, D. L., Reekie, A., Ashcroft, G. P., Howie, C. R., Porter, D. E., & Black, R. J. (2013). Risk of cancer following primary total hip replacement or primary resurfacing arthroplasty of the hip: A retrospective cohort study in Scotland. British Journal of Cancer, 108, 1883–1890. https://doi.org/10.1038/bjc.2013.129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, B. N., Mani, D., Nolfi, M. A. L., Liang, R., Abramowitch, S., & Moalli, P. A. (2015). Characterization of the host inflammatory response following implantation of prolapse mesh in rhesus macaque. American Journal of Obstetrics and Gynecology, 213, 668.e661–668.e610. https://doi.org/10.1016/j.ajog.2015.08.002.

    Article  CAS  Google Scholar 

  • Budras, K. D., McCarthy, P. H., Fricke, W., Richter, R., Horowitz, A., & Berg, R. (2007). Anatomy of the dog: An illustrated text. Hanover: Schlütersche Verlagsgesellschaft mbH &.

    Google Scholar 

  • Busscher, H. J., et al. (2012). Biomaterial-associated infection: Locating the finish line in the race for the surface. Science Translational Medicine, 4, 153rv110–153rv110.

    Article  CAS  Google Scholar 

  • Callis, G., Sterchi, D., & National Society for H. (2002). Animal processing manual. Bowie: National Society for Histotechnology.

    Google Scholar 

  • Caropreso, S., Bondioli, L., Capannolo, D., Cerroni, L., Macchiarelli, R., & Condo, S. (2000). Thin sections for hard tissue histology: A new procedure. Journal of Microscopy, 199, 244–247.

    Article  CAS  PubMed  Google Scholar 

  • Carter, R. L., & Roe, F. J. (1969). Induction of sarcomas in rats by solid and fragmented polyethylene: Experimental observations and clinical implications. British Journal of Cancer, 23, 401–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra, S. A., et al. (2015). Dermal toxicity studies: Factors impacting study interpretation and outcome. Toxicologic Pathology, 43, 474–481. https://doi.org/10.1177/0192623314548765.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science & Engineering R: Reports, 87, 1–57.

    Article  Google Scholar 

  • Cheville, N. F., & Stasko, J. (2014). Techniques in Electron microscopy of animal tissue. Veterinary Pathology, 51, 28–41. https://doi.org/10.1177/0300985813505114.

    Article  CAS  PubMed  Google Scholar 

  • Cook, J. L., Kuroki, K., Visco, D., Pelletier, J. P., Schulz, L., & Lafeber, F. P. J. G. (2010). The OARSI histopathology initiative – Recommendations for histological assessments of osteoarthritis in the dog. Osteoarthritis and Cartilage, 18(Supplement 3), S66–S79. https://doi.org/10.1016/j.joca.2010.04.017.

    Article  PubMed  Google Scholar 

  • Crissman, J. W., et al. (2004). Best practices guideline: Toxicologic histopathology. Toxicologic Pathology, 32, 126–131.

    Article  CAS  PubMed  Google Scholar 

  • Dalu, A., Blaydes, B. S., Lomax, L. G., & Delclos, K. B. (2000). A comparison of the inflammatory response to a polydimethylsiloxane implant in male and female Balb/c mice. Biomaterials, 21, 1947–1957.

    Article  CAS  PubMed  Google Scholar 

  • Datta, S., Malhotra, L., Dickerson, R., Chaffee, S., Sen, C. K., & Roy, S. (2015). Laser capture microdissection: Big data from small samples. Histology and Histopathology, 30, 1255–1269. https://doi.org/10.14670/HH-11-622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, L. C., Jenkins, S. J., Allen, J. E., & Taylor, P. R. (2013). Tissue-resident macrophages. Nature Immunology, 14, 986–995. https://doi.org/10.1038/ni.2705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Jong, W. H., Bergsma, J. E., Robinson, J. E., & Bos, R. R. (2005). Tissue response to partially in vitro predegraded poly-L-lactide implants. Biomaterials, 26, 1781–1791.

    Article  PubMed  CAS  Google Scholar 

  • DeLustro, F., Condell, R. A., Nguyen, M. A., & McPherson, J. M. (1986). A comparative study of the biologic and immunologic response to medical devices derived from dermal collagen. Journal of Biomedical Materials Research, 20, 109–120. https://doi.org/10.1002/jbm.820200110.

    Article  CAS  PubMed  Google Scholar 

  • DiEgidio, P., Friedman, H. I., Gourdie, R. G., Riley, A. E., Yost, M. J., & Goodwin, R. L. (2014). Biomedical implant capsule formation: Lessons learned and the road ahead. Annals of Plastic Surgery, 73, 451–460.

    Article  CAS  PubMed  Google Scholar 

  • Diller, R. B., Audet, R. G., & Kellar, R. S. (2015). Quantitative histopathology for evaluation of in vivo biocompatibility associated with biomedical implants. In J. S. Potts, A. D. Eberhard, & J. A. K. Wharton (Eds.), Molecular histopathology and tissue biomarkers in drug and diagnostic development (pp. 153–162). New York: Springer. https://doi.org/10.1007/7653_2014_37.

    Chapter  Google Scholar 

  • Dobrovolskaia, M. A. (2015). Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy. Journal of Controlled Release : Official Journal of the Controlled Release Society, 220, 571–583. https://doi.org/10.1016/j.jconrel.2015.08.056.

    Article  CAS  Google Scholar 

  • Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15, 167–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos, P. L., et al. (2016). Evaluation of bone substitutes for treatment of peri-implant bone defects: Biomechanical, histological, and immunohistochemical analyses in the rabbit tibia. Journal of Periodontal & Implant Science, 46, 176–196.

    Article  CAS  Google Scholar 

  • Douglass, J. P., Berry, C. R., Thrall, D. E., Malarkey, D. E., & Spaulding, K. A. (2003). Radiographic features of aortic bulb/valve mineralization in 20 dogs. Veterinary Radiology & Ultrasound, 44, 20–27.

    Article  Google Scholar 

  • Elmore, S. A. (2006a). Enhanced histopathology of mucosa-associated lymphoid tissue. Toxicologic Pathology, 34, 687–696. https://doi.org/10.1080/01926230600939989.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmore, S. A. (2006b). Enhanced histopathology of the lymph nodes. Toxicologic Pathology, 34, 634–647.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmore, S. A. (2006c). Enhanced histopathology of the spleen. Toxicologic Pathology, 34, 648–655.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmore, S. A. (2006d). Enhanced histopathology of the thymus. Toxicologic Pathology, 34, 656.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmore, S. A., et al. (2017). Proceedings of the 2017 National Toxicology Program Satellite Symposium. Toxicologic Pathology, 45, 799–833. https://doi.org/10.1177/0192623317733924.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans, H. E., & De Lahunta, A. (2013). Miller's anatomy of the dog (4th ed.). St. Louis: Elsevier Health Sciences.

    Google Scholar 

  • Everds, N. E., et al. (2013). Interpreting stress responses during routine toxicity studies: A review of the biology, impact, and assessment. Toxicologic Pathology, 41, 560–614. https://doi.org/10.1177/0192623312466452.

    Article  PubMed  Google Scholar 

  • Farrah, K., Mierzwinski-Urban, M., & Cimon, K. (2016). Effectiveness of adverse effects search filters: Drugs versus medical devices. Journal of the Medical Library Association: JMLA, 104, 221–225. https://doi.org/10.3163/1536-5050.104.3.007.

    Article  PubMed  Google Scholar 

  • Fellah, B. H., Weiss, P., Gauthier, O., Rouillon, T., Pilet, P., Daculsi, G., & Layrolle, P. (2006). Bone repair using a new injectable self-crosslinkable bone substitute. Journal of Orthopaedic Research, 24, 628–635.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Bueno, I., et al. (2015). Safety and biocompatibility of a new high-density polyethylene-based spherical integrated porous orbital implant: An experimental study in rabbits. Journal of Ophthalmology, 2015, 904096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frydman, G. H., et al. (2017). Local and systemic changes associated with long-term, percutaneous, static implantation of titanium alloys in rhesus macaques (Macaca mulatta). Comparative Medicine, 67, 165–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funk, K. A., Hampshire, V. A., & Schuh, J. C. L. (2018). Nonclinical safety evaluation of medical devices. In P. S. Sahota, J. A. Popp, P. Bouchard, J. F. Hardisty, & C. Gopinath (Eds.), Toxicologic pathology: Nonclinical safety assessment (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Gad, S. C., & Gad-McDonald, S. (2016). Biomaterials, medical devices, and combination products: Biocompatibility testing and safety assessment. Boca Raton: CRC Press.

    Google Scholar 

  • Gad, S. C., & Schuh, J. C. L. (2018). Regulatory forum opinion paper: Considerations for toxicologic pathologists evaluating the safety of biomaterials and finished medical devices. Toxicologic Pathology, 46, 366–371. https://doi.org/10.1177/0192623318768719.

    Article  PubMed  Google Scholar 

  • Gage, G. J., Kipke, D. R., & Shain, W. (2012). Whole animal perfusion fixation for rodents. Journal of Visualized Experiments : JoVE, 3564. https://doi.org/10.3791/3564.

  • Ganta, S. R., et al. (2003). Vascularization and tissue infiltration of a biodegradable polyurethane matrix. Journal of Biomedical Materials Research. Part A, 64, 242–248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauthier, B. E., Gervais, F., Hamm, G., O’Shea, D., Piton, A., & Schumacher, V. L. (2019). Toxicologic pathology forum: opinion on integrating innovative digital pathology tools in the regulatory framework. Toxicologic Pathology, 47, 436–443.

    Google Scholar 

  • Gibon, E., et al. (2017a). The biological response to orthopaedic implants for joint replacement: Part I: Metals. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105, 2162–2173.

    Article  CAS  PubMed  Google Scholar 

  • Gibon, E., Córdova, L. A., Lu, L., Lin, T. H., Yao, Z., Hamadouche, M., & Goodman, S. B. (2017b). The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105, 1685–1691.

    Article  CAS  PubMed  Google Scholar 

  • Goad, M., & Goad, D. (2013). Biomedical materials and devices. In W. M. Haschek, C. G. Rousseaux, M. A. Wallig, B. Bolon, R. Ochoa, & B. Mahler (Eds.), Haschek and Rousseaux's handbook of toxicologic pathology (Vol. 3, 3rd ed., pp. 783–806). San Diego: Elsevier (Academic Press).

    Chapter  Google Scholar 

  • Golder, S., Wright, K., & Rodgers, M. (2014). Failure or success of search strategies to identify adverse effects of medical devices: A feasibility study using a systematic review. Systematic Reviews, 3, 113–113. https://doi.org/10.1186/2046-4053-3-113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorbet, M. B., & Sefton, M. V. (2004). Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 25, 5681–5703. https://doi.org/10.1016/j.biomaterials.2004.01.023.

    Article  CAS  PubMed  Google Scholar 

  • Greaves, P., et al. (2013). Proliferative and non-proliferative lesions of the rat and mouse soft tissue, skeletal muscle and mesothelium. Journal of Toxicologic Pathology, 26, 1S–26S. https://doi.org/10.1293/tox.26.1S.

    Article  PubMed  Google Scholar 

  • Greenwood, J. E., & Dearman, B. L. (2012). Split skin graft application over an integrating, biodegradable temporizing polymer matrix: Immediate and delayed. Journal of Burn Care & Research, 33, 7–19.

    Article  Google Scholar 

  • Grossman, J. D., & Getty, R. (1975a). Sisson and Grossman's the anatomy of the domestic animals: Equine, ruminant (Vol. I, 5th ed.). Philadelphia: Saunders.

    Google Scholar 

  • Grossman, J. D., & Getty, R. (1975b). Sisson and Grossman's the anatomy of the domestic animals: Porcine, carnivore, Aves (Vol. 2, 5th ed.). Philadelphia: Saunders.

    Google Scholar 

  • Gundersen, H. J. G., Mirabile, R., Brown, D., & Boyce, R. W. (2013). Stereological principles and sampling procedures for toxicologic pathologists. In W. M. Haschek, C. G. Rousseaux, & M. A. Wallig (Eds.), Haschek and Rousseaux's handbook of toxicologic pathology (Vol. 1, 3rd ed., pp. 215–286). Boston: Academic Press. https://doi.org/10.1016/B978-0-12-415759-0.00008-X.

    Chapter  Google Scholar 

  • Handel, N. (2006). Long-term safety and efficacy of polyurethane foam-covered breast implants. Aesthetic Surgery Journal, 26, 265–274.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, T., et al. (2002). New aspects in the histological examination of polyethylene wear particles in failed total joint replacements. Acta Histochemica, 104, 263–269. https://doi.org/10.1078/0065-1281-00649.

    Article  PubMed  Google Scholar 

  • Harrell, M. I., Iritani, B. M., & Ruddell, A. (2008). Lymph node mapping in the mouse. Journal of Immunological Methods, 332, 170–174.

    Article  CAS  PubMed  Google Scholar 

  • Hassler, C., Boretius, T., & Stieglitz, T. (2011). Polymers for neural implants. Journal of Polymer Science Part B: Polymer Physics, 49, 18–33. https://doi.org/10.1002/polb.22169.

    Article  CAS  Google Scholar 

  • Heredia, J. E., et al. (2013). Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell, 153, 376–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honari, G., Ellis, S. G., Wilkoff, B. L., Aronica, M. A., Svensson, L. G., & Taylor, J. S. (2008). Hypersensitivity reactions associated with endovascular devices. Contact Dermatitis, 59, 7–22.

    Article  PubMed  Google Scholar 

  • Hook, A. L., et al. (2012). Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology, 30, 868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper, K. A., Macon, N. D., & Kohn, J. (1998). Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation. Journal of Biomedical Materials Research. Part A, 41, 443–454.

    Article  CAS  Google Scholar 

  • Horne, J., Bateman, A. C., Carr, N. J., & Ryder, I. (2014). Lymph node revealing solutions in colorectal cancer: Should they be used routinely? Journal of Clinical Pathology, 67, 383–388. https://doi.org/10.1136/jclinpath-2013-202146.

    Article  PubMed  Google Scholar 

  • Hu, W.-J., Eaton, J. W., Ugarova, T. P., & Tang, L. (2001). Molecular basis of biomaterial-mediated foreign body reactions. Blood, 98, 1231–1238.

    Article  CAS  PubMed  Google Scholar 

  • Iezzi, G., et al. (2014). Peri-implant bone tissues around retrieved human implants after time periods longer than 5 years: A retrospective histologic and histomorphometric evaluation of 8 cases. Odontology, 102, 116–121.

    Article  PubMed  Google Scholar 

  • Ikarashi, Y., et al. (1992). Comparative studies by cell culture and in vivo implantation test on the toxicity of natural rubber latex materials. Journal of Biomedical Materials Research. Part A, 26, 339–356.

    Article  CAS  Google Scholar 

  • Institute of Medicine. (1999). Safety of silicone breast implants. Washington, DC: The National Academies Press. https://doi.org/10.17226/9602.

    Book  Google Scholar 

  • International Council for Harmonisation. (1995). S1A need for carcinogenicity studies of pharmaceuticals.

    Google Scholar 

  • International Organization for Standardization. (2009). ISO 10993-1: 2009/Cor 1:2010. Part 1: Evaluation and testing within a risk management process. Geneva.

    Google Scholar 

  • International Organization for Standardization. (2014). ISO 10993-3:2014 tests for genotoxicity, carcinogenicity and reproductive toxicity. Geneva.

    Google Scholar 

  • International Organization for Standardization. (2016). ISO 10993-6:2016. Part 6: Tests for local effects after implantation. Geneva.

    Google Scholar 

  • International Organization for Standardization. (2017a). ISO 10993-4: 2017. Part 4: Selection of tests for interactions with blood. Geneva.

    Google Scholar 

  • International Organization for Standardization. (2017b). ISO 10993-11:2017. Part 11: Tests for systemic toxicity. Geneva.

    Google Scholar 

  • International Organization for Standardization. (2017c). ISO 10993-16: 2017. Part 16: Toxicokinetic study design for degradation products and leachables. Geneva.

    Google Scholar 

  • Ionita, C. N., et al. (2009). The asymmetric vascular stent: Efficacy in a rabbit aneurysm model. Stroke, 40, 959–965. https://doi.org/10.1161/STROKEAHA.108.524124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, R., & Suami, H. (2015). Lymphatic territories (lymphosomes) in swine: an animal model for future lymphatic research. Plastic and Reconstructive Surgery, 136, 297–304.

    Google Scholar 

  • Jaafar, I. H., LeBlon, C. E., Wei, M.-T., Ou-Yang, D., Coulter, J. P., & Jedlicka, S. S. (2011). Improving fluorescence imaging of biological cells on biomedical polymers. Acta Biomaterialia, 7, 1588–1598. https://doi.org/10.1016/j.actbio.2010.12.007.

    Article  CAS  PubMed  Google Scholar 

  • Jessen, S. L., et al. (2018). Method for preclinical pathology evaluation and analysis of cardiovascular implantable electronic device implant sites. Cardiovascular Pathology, 36, 44–52.

    Article  PubMed  Google Scholar 

  • Jones, K. (2015). Fibrotic response to biomaterials and all associated sequence of fibrosis. In S. F. Badylak (Ed.), Host response to biomaterials (pp. 189–237). Oxford, UK: Academic Press. https://doi.org/10.1016/B978-0-12-800196-7.00009-8.

    Chapter  Google Scholar 

  • Kalimo, K., Räsänen, L., Aho, H., Mäki, J., Mustikkamki, U. P., & Rantala, I. (1996). Persistent cutaneous pseudolymphoma after intradermal gold injection. Journal of Cutaneous Pathology, 23, 328–334.

    Article  CAS  PubMed  Google Scholar 

  • Kaminski, E. J., Oglesby, R. J., Wood, N. K., & Sandrik, J. (1968). The behavior of biological materials at different sites of implantation. Journal of Biomedical Materials Research, 2, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Kariyawasam, H. H., & Robinson, D. S. (2006). The eosinophil: The cell and its weapons, the cytokines, its locations. Seminars in Respiratory and Critical Care Medicine, 27, 117–127. https://doi.org/10.1055/s-2006-939514.

    Article  PubMed  Google Scholar 

  • Keel, S. B., Jaffe, K. A., Nielsen, G. P., & Rosenberg, A. E. (2001). Orthopaedic implant-related sarcoma: A study of twelve cases. Modern Pathology, 14, 969–977.

    Article  CAS  PubMed  Google Scholar 

  • Kesler, C. T., Liao, S., Munn, L. L., & Padera, T. P. (2013). Lymphatic vessels in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3, 111–124.

    Google Scholar 

  • Kirkpatrick, C. J., et al. (2000). Biomaterial-induced sarcoma : A novel model to study preneoplastic change. The American Journal of Pathology, 156, 1455–1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittel, B., et al. (2004). Revised guides for organ sampling and trimming in rats and mice–Part 2: A joint publication of the RITA and NACAD groups. Experimental and Toxicologic Pathology, 55, 413–431.

    Article  PubMed  Google Scholar 

  • Klopfleisch, R., & Jung, F. (2017). The pathology of the foreign body reaction against biomaterials. Journal of Biomedical Materials Research. Part A, 105, 927–940. https://doi.org/10.1002/jbm.a.35958.

    Article  CAS  PubMed  Google Scholar 

  • Knoblaugh, S. E., & Randolph-Habecker, J. (2017). Necropsy and histology. In P. M. Treuting, S. M. Dintzis, & K. S. Montine (Eds.), Comparative anatomy and histology: A mouse, rat, and human atlas (2nd ed., pp. 23–51). San Diego: Elsevier.

    Google Scholar 

  • Konttinen, Y. T., Pajarinen, J., Takakubo, Y., Gallo, J., Nich, C., Takagi, M., & Goodman, S. B. (2014). Macrophage polarization and activation in response to implant debris: Influence by “particle disease” and “ion disease”. Journal of Long-Term Effects of Medical Implants, 24, 267–281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraus, T., Fischerauer, S. F., Hänzi, A. C., Uggowitzer, P. J., Löffler, J. F., & Weinberg, A. M. (2012). Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomaterialia, 8, 1230–1238.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, V. B., Huebner, J. L., DeGroot, J., & Bendele, A. (2010). The OARSI histopathology initiative – Recommendations for histological assessments of osteoarthritis in the Guinea pig. Osteoarthritis and Cartilage, 18(Supplement 3), S35–S52. https://doi.org/10.1016/j.joca.2010.04.015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krenn, V., et al. (2014). Revised histopathological consensus classification of joint implant related pathology. Pathology, Research and Practice, 210, 779–786. https://doi.org/10.1016/j.prp.2014.09.017.

    Article  CAS  PubMed  Google Scholar 

  • Krenn, V., & Perino, G. (2017). Histological diagnosis of implant-associated pathologies. Clinical management of joint arthroplasty. Berlin: Springer.

    Book  Google Scholar 

  • Latendresse, J. R., Warbrittion, A. R., Jonassen, H., & Creasy, D. M. (2002). Fixation of testes and eyes using a modified Davidson's fluid: Comparison with Bouin's fluid and conventional Davidson's fluid. Toxicologic Pathology, 30, 524–533.

    Article  PubMed  Google Scholar 

  • Lee, J. M., & Kim, Y. J. (2015). Foreign body granulomas after the use of dermal fillers: Pathophysiology, clinical appearance, histologic features, and treatment. Archives of Plastic Surgery, 42, 232–239. https://doi.org/10.5999/aps.2015.42.2.232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leigh Perkins, L. E. (2010). Preclinical models of restenosis and their application in the evaluation of drug-eluting stent systems. Veterinary Pathology, 47, 58–76. https://doi.org/10.1177/0300985809352978.

    Article  Google Scholar 

  • Lemperle, G., Morhenn, V. B., Pestonjamasp, V., & Gallo, R. L. (2004). Migration studies and histology of injectable microspheres of different sizes in mice. Plastic and Reconstructive Surgery, 113, 1380–1390.

    Article  PubMed  Google Scholar 

  • Lie, K. I., Jaeger, G., Nordstoga, K., & Moe, L. (2011). Inflammatory response to therapeutic gold bead implantation in canine hipjoint osteoarthritis. Veterinary Pathology, 48, 1118–1124.

    Article  PubMed  Google Scholar 

  • Loch-Wilkinson, A., et al. (2017). Breast implant–associated anaplastic large cell lymphoma in Australia and New Zealand: High-surface-area textured implants are associated with increased risk. Plastic and Reconstructive Surgery, 140, 645–654.

    Article  CAS  PubMed  Google Scholar 

  • Long, P. H. (2008). Medical devices in orthopedic applications. Toxicologic Pathology, 36, 85–91. https://doi.org/10.1177/0192623307310951.

    Article  CAS  PubMed  Google Scholar 

  • Major, M. R., Wong, V. W., Nelson, E. R., Longaker, M. T., & Gurtner, G. C. (2015). The foreign body response: At the interface of surgery and bioengineering. Plastic and Reconstructive Surgery, 135, 1489–1498.

    Article  CAS  PubMed  Google Scholar 

  • Malik, N., et al. (1998). Intravascular stents: A new technique for tissue processing for histology, immunohistochemistry, and transmission electron microscopy. Heart, 80, 509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markwardt, N. T., Stokol, J., & Rennaker, R. L. (2013). Sub-meninges implantation reduces immune response to neural implants. Journal of Neuroscience Methods, 214, 119–125. https://doi.org/10.1016/j.jneumeth.2013.01.020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuda, K., et al. (2005). A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: Correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine, 30, 5–14.

    Article  PubMed  Google Scholar 

  • Mathiesen, E. B., Ahlbom, A., Bermann, G., & Lindgren, J. (1995). Total hip replacement and cancer. A Cohort Study Bone & Joint Journal, 77, 345–350.

    CAS  Google Scholar 

  • Maul, T. M., et al. (2011). Pre-clinical implants of the Levitronix PediVAS(®) pediatric ventricular assist device – strategy for regulatory approval. Cardiovascular Engineering and Technology, 2, 263–275. https://doi.org/10.1007/s13239-011-0063-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGregor, D. B., Baan, R. A., Partensky, C., Rice, J. M., & Wilbourn, J. D. (2000). Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies; a report of an IARC monographs programme meeting. European Journal of Cancer, 36, 307–313. https://doi.org/10.1016/S0959-8049(99)00312-3.

    Article  CAS  PubMed  Google Scholar 

  • McInnes, E. (2005). Artefacts in histopathology. Comparative Clinical Pathology, 13, 100–108.

    Article  Google Scholar 

  • McLaughlin, J. K., Lipworth, L., Murphy, D. K., & Walker, P. S. (2007). The safety of silicone gel-filled breast implants: A review of the epidemiologic evidence. Annals of Plastic Surgery, 59, 569–580.

    Article  CAS  PubMed  Google Scholar 

  • Meng, H.-W., Chien, E. Y., & Chien, H.-H. (2016). Dental implant bioactive surface modifications and their effects on osseointegration: A review. Biomarker Research, 4, 24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milde, R., et al. (2015). Multinucleated Giant cells are specialized for complement-mediated phagocytosis and large target destruction. Cell Reports, 13, 1937–1948. https://doi.org/10.1016/j.celrep.2015.10.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moalli, P., Brown, B., Reitman, M. T. F., & Nager, C. W. (2014). Polypropylene mesh: Evidence for lack of carcinogenicity. International Urogynecology Journal, 25, 573–576. https://doi.org/10.1007/s00192-014-2343-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moizhess, T. G. (2008). Carcinogenesis induced by foreign bodies. Biochemistry (Mosc), 73, 763–775.

    Article  CAS  Google Scholar 

  • Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., ERd, C., & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34, 103–110. https://doi.org/10.1016/j.ijantimicag.2009.01.017.

    Article  CAS  PubMed  Google Scholar 

  • Morais, J. M., Papadimitrakopoulos, F., & Burgess, D. J. (2010). Biomaterials/tissue interactions: Possible solutions to overcome foreign body response. The AAPS Journal, 12, 188–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morawietz, G., et al. (2004). Revised guides for organ sampling and trimming in rats and mice–Part 3: A joint publication of the RITA and NACAD groups. Experimental and Toxicologic Pathology, 55, 433–449.

    Article  PubMed  Google Scholar 

  • Morawietz, L., et al. (2006). Proposal for a histopathological consensus classification of the periprosthetic interface membrane. Journal of Clinical Pathology, 59, 591–597. https://doi.org/10.1136/jcp.2005.027458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton, D., et al. (2010). Recommendations for pathology peer review. Toxicologic Pathology, 38, 1118–1127.

    Article  PubMed  Google Scholar 

  • Moya, J. S., et al. (2016). Histological response of soda-lime glass-ceramic bactericidal rods implanted in the jaws of beagle dogs. Scientific Reports, 6, 31478. https://doi.org/10.1038/srep31478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhamed, J., Revi, D., Rajan, A., Geetha, S., & Anilkumar, T. V. (2015). Biocompatibility and immunophenotypic characterization of a Porcine Cholecyst–derived Scaffold implanted in rats. Toxicologic Pathology, 43, 536–545. https://doi.org/10.1177/0192623314550722.

    Article  CAS  PubMed  Google Scholar 

  • Nam, S. Y., Ricles, L. M., Suggs, L. J., & Emelianov, S. Y. (2015). Imaging strategies for tissue engineering applications. Tissue Engineering Part B, Reviews, 21, 88–102. https://doi.org/10.1089/ten.teb.2014.0180.

    Article  PubMed  Google Scholar 

  • Neef, N., Nikula, K. J., Francke-Carroll, S., & Boone, L. (2012). Regulatory forum opinion piece: Blind reading of histopathology slides in general toxicology studies∗. Toxicologic Pathology, 40, 697–699. https://doi.org/10.1177/0192623312438737.

    Article  PubMed  Google Scholar 

  • Nich, C., & Goodman, S. B. (2014). The role of macrophages in the biological reaction to wear debris from joint replacements. Journal of Long-Term Effects of Medical Implants, 24, 259–265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikula, K. J., & Funk, K. (2016). Regulatory forum opinion piece: An experienced pathologist should be present at necropsy for novel medical device studies. Toxicologic Pathology, 44, 9–11. https://doi.org/10.1177/0192623315617035.

    Article  PubMed  Google Scholar 

  • Nyska, A., Schiffenbauer, Y. S., Brami, C. T., Maronpot, R. R., & Ramot, Y. (2014). Histopathology of biodegradable polymers: Challenges in interpretation and the use of a novel compact MRI for biocompatibility evaluation. Polymers for Advanced Technologies, 25, 461–467. https://doi.org/10.1002/pat.3238.

    Article  CAS  Google Scholar 

  • Oppenheimer, B. S., Oppenheimer, E. T., Danishefsky, I., Stout, A. P., & Eirich, F. R. (1955). Further studies of polymers as carcinogenic agents in animals. Cancer Research, 15, 333–340.

    CAS  PubMed  Google Scholar 

  • Orenstein, S. B., Saberski, E. R., Kreutzer, D. L., & Novitsky, Y. W. (2012). Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. The Journal of Surgical Research, 176, 423–429.

    Article  PubMed  Google Scholar 

  • Pagán, A. J., & Ramakrishnan, L. (2018). The formation and function of granulomas. Annual Review of Immunology, 36. https://doi.org/10.1146/annurev-immunol-032712-100022.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, M. S., et al. (2012). Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. The Lancet, 380, 499–505.

    Article  Google Scholar 

  • Perkins, R. B., Handal-Orefice, R., Hanchate, A. D., Lin, M., & Paasche-Orlow, M. K. (2016). Risk of undetected cancer at the time of laparoscopic supracervical hysterectomy and laparoscopic myomectomy: Implications for the use of power morcellation. Womens Health Issues, 26, 21–26.

    Article  PubMed  Google Scholar 

  • Phillips, P. L., Wolcott, R. D., Cowan, L. J., & Schultz, G. S. (2016). Biofilms in wounds and wound dressing. In Wound Healing Biomaterials-Volume 2: Functional Biomaterials (55–78). Philidelphia: Elsevier.

    Google Scholar 

  • Pierce, L. M., Rao, A., Baumann, S. S., Glassberg, J. E., Kuehl, T. J., & Muir, T. W. (2009). Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. American Journal of Obstetrics and Gynecology, 200, 546.e541– 546.e548. https://doi.org/10.1016/j.ajog.2008.12.040.

    Article  Google Scholar 

  • Pinchuk, L. (1995). A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of biostable polyurethanes. Journal of Biomaterials Science. Polymer Edition, 6, 225–267.

    Article  Google Scholar 

  • Pizzoferrato, A., Savarino, L., Stea, S., & Tarabusi, C. (1988). Results of histological grading on 100 cases of hip prosthesis failure. Biomaterials, 9, 314–318.

    Article  CAS  PubMed  Google Scholar 

  • Popesko, P., & Getty, R. (1971). Atlas of topographical anatomy of the domestic animals (Vol. I-III vol I-III).

    Google Scholar 

  • Popesko, P., Rajtová, V., & Horak, J. (1990). A colour atlas of the anatomy of small laboratory animals: Rat, mouse, hamster (Vol. 2). London: Wolfe Publishing Ltd.

    Google Scholar 

  • Popesko, P., Rajtová, V., & Horak, J. (1992). A colour atlas of the anatomy of small laboratory animals: Rabbit, Guinea pig (Vol. 1). London: Wolfe Publishing Ltd.

    Google Scholar 

  • Ramot, Y., et al. (2015a). Long-term local and systemic safety of poly (l-lactide-co-epsilon-caprolactone) after subcutaneous and intra-articular implantation in rats. Toxicologic Pathology, 43, 1127–1140.

    Article  CAS  PubMed  Google Scholar 

  • Ramot, Y., Rousselle, S. D., Yellin, N., Willenz, U., Sabag, I., Avner, A., & Nyska, A. (2016). Biocompatibility and systemic safety of a novel implantable annuloplasty ring for the treatment of mitral regurgitation in a minipig model. Toxicologic Pathology, 44, 655–662. https://doi.org/10.1177/0192623315627217.

    Article  CAS  PubMed  Google Scholar 

  • Ramot, Y., et al. (2015b). Interspecies differences in reaction to a biodegradable subcutaneous tissue filler: Severe inflammatory granulomatous reaction in the Sinclair minipig. Toxicologic Pathology, 43, 267–271. https://doi.org/10.1177/0192623314534995.

    Article  CAS  PubMed  Google Scholar 

  • Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2013). Biomaterials science: An introduction to materials in medicine (3rd ed.). Canada: Academic Press (Elsevier).

    Google Scholar 

  • Ren, P.-G., Irani, A., Huang, Z., Ma, T., Biswal, S., & Goodman, S. B. (2011). Continuous infusion of UHMWPE particles induces increased bone macrophages and osteolysis. Clinical Orthopaedics and Related Research, 469, 113–122. https://doi.org/10.1007/s11999-010-1645-5.

    Article  PubMed  Google Scholar 

  • Rentsch, C., Schneiders, W., Manthey, S., Rentsch, B., & Rammelt, S. (2014). Comprehensive histological evaluation of bone implants. Biomatter, 4, e27993. https://doi.org/10.4161/biom.27993.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricciardi, B. F., et al. (2016). Histopathological characterization of corrosion product associated adverse local tissue reaction in hip implants: A study of 285 cases. BMC Clinical Pathology, 16, 3. https://doi.org/10.1186/s12907-016-0025-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigdon, R. (1973). Local reaction to polyurethane—A comparative study in the mouse, rat, and rabbit. Journal of Biomedical Materials Research, 7, 79–93.

    Article  CAS  PubMed  Google Scholar 

  • Ripamonti, U. (1996). Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials, 17, 31–35.

    Article  CAS  PubMed  Google Scholar 

  • Rismanchian, M., Movahedian, B., Khalighinejad, N., Badrian, H., Mohammad Razavi, S., & Nekouie, A. (2012). Comparative evaluation of two types of immediately loaded implants using biomechanical and histomorphometric tests: An animal case study. ISRN Dentistry, 2012, 328945. https://doi.org/10.5402/2012/328945.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, A., et al. (2013). Integrated microscopy techniques for comprehensive pathology evaluation of an implantable left atrial pressure sensor. Journal of Histotechnology, 36, 17–24. https://doi.org/10.1179/2046023613Y.0000000021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez, J. N., et al. (2014). In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model. Journal of Biomedical Materials Research. Part A, 102, 1231–1242. https://doi.org/10.1002/jbm.a.34782.

    Article  CAS  PubMed  Google Scholar 

  • Rousselle, S., & Wicks, J. (2008). Preparation of medical devices for evaluation. Toxicologic Pathology, 36, 81–84.

    Article  PubMed  Google Scholar 

  • Rousselle, S. D., Wicks, J. R., Tabb, B. C., Tellez, A., & O’Brien, M. (2019). Histology strategies for medical implants and interventional device studies. Toxicologic Pathology, 47, 235–249.

    Google Scholar 

  • Rouselle, S., & Paulin, J. (2019). Medical Devices Special Issue. Toxicologic Pathology, 47, 201–432.

    Google Scholar 

  • Ruehl-Fehlert, C., et al. (2003). Revised guides for organ sampling and trimming in rats and mice – Part 1. Experimental and Toxicologic Pathology, 55, 91–106. https://doi.org/10.1078/0940-2993-00311.

    Article  PubMed  Google Scholar 

  • Rutgers, M., van Pelt, M. J. P., Dhert, W. J. A., Creemers, L. B., & Saris, D. B. F. (2010). Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage. Osteoarthritis and Cartilage, 18, 12–23. https://doi.org/10.1016/j.joca.2009.08.009.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, J. E., Stiles, C. E., & Hayes, C. (2000). Tissue response to single-polymer fibers of varying diameters: Evaluation of fibrous encapsulation and macrophage density. Journal of Biomedical Materials Research, 52, 231–237.

    Article  CAS  PubMed  Google Scholar 

  • Sanjai, K., Kumarswamy, J., Patil, A., Papaiah, L., Jayaram, S., & Krishnan, L. (2012). Evaluation and comparison of decalcification agents on the human teeth. Journal of Oral and Maxillofacial Pathology : JOMFP, 16, 222–227. https://doi.org/10.4103/0973-029X.99070.

    Article  PubMed  Google Scholar 

  • Santerre, J., Woodhouse, K., Laroche, G., & Labow, R. (2005). Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials, 26, 7457–7470.

    Article  CAS  PubMed  Google Scholar 

  • Sato, J., Doi, T., Kanno, T., Wako, Y., Tsuchitani, M., & Narama, I. (2012a). Histopathology of incidental findings in Cynomolgus monkeys (Macaca Fascicularis) used in toxicity studies. Journal of Toxicologic Pathology, 25, 63–101. https://doi.org/10.1293/tox.25.63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato, J., Doi, T., Wako, Y., Hamamura, M., Kanno, T., Tsuchitani, M., & Narama, I. (2012b). Histopathology of incidental findings in beagles used in toxicity studies. Journal of Toxicologic Pathology, 25, 103–134. https://doi.org/10.1293/tox.25.103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmalzried, T. P., Jasty, M., Rosenberg, A., & Harris, W. H. (1993). Histologic identification of polyethylene wear debris using oil red O stain. Journal of Applied Biomaterials, 4, 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Schoen, F. J., Harasaki, H., Kim, K. M., Anderson, H. C., & Levy, R. J. (1988). Biomaterial-associated calcification: Pathology, mechanisms, and strategies for prevention. Journal of Biomedical Materials Research, 22, 11–36.

    CAS  PubMed  Google Scholar 

  • Schuh, J. C. L. (2008). Medical device regulations and testing for toxicologic pathologists. Toxicologic Pathology, 36, 63–69. https://doi.org/10.1177/0192623307309926.

    Article  PubMed  Google Scholar 

  • Schuh, J. C. L. (2015). Genetically modified animal models. In S. C. Gad (Ed.), Animal models in toxicology (3rd ed., pp. 935–956). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Schuh, J. C. L., & Funk, K. A. (2019). Compilation of international standards and regulatory guidance documents for evaluation of biomaterials, medical devices, 3D printed and regenerative medicine products. Toxicologic Pathology, 47, 344.

    Article  PubMed  Google Scholar 

  • Schwartz, R. S., et al. (2004). Preclinical evaluation of drug-eluting stents for peripheral applications: Recommendations from an expert consensus group. Circulation, 110, 2498–2505.

    Article  PubMed  Google Scholar 

  • Sellers, R. S., et al. (2007). Society of Toxicologic Pathology position paper: Organ weight recommendations for toxicology studies. Toxicologic Pathology, 35, 751–755.

    Article  PubMed  Google Scholar 

  • Shackelford, C., Long, G., Wolf, J., Okerberg, C., & Herbert, R. (2002). Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicologic Pathology, 30, 93–96. https://doi.org/10.1080/01926230252824761.

    Article  PubMed  Google Scholar 

  • Shayesteh Moghaddam, N., et al. (2016). Metals for bone implants: Safety, design, and efficacy. Biomanufacturing Reviews, 1, 1. https://doi.org/10.1007/s40898-016-0001-2.

    Article  Google Scholar 

  • Shea, K. G., Bloebaum, R. D., Avent, J. M., Birk, G. T., & Samuelson, K. M. (1996). Analysis of lymph nodes for polyethylene particles in patients who have had a primary joint replacement. Journal of Bone and Joint Surgery, 78, 497–504.

    Article  CAS  PubMed  Google Scholar 

  • Sheth, S., Litvack, F., Dev, V., Fishbein, M. C., Forrester, J. S., & Eigler, N. (1996). Subacute thrombosis and vascular injury resulting from slotted-tube nitinol and stainless steel stents in a rabbit carotid artery model. Circulation, 94, 1733–1740. https://doi.org/10.1161/01.cir.94.7.1733.

    Article  CAS  PubMed  Google Scholar 

  • Shoieb, A., Allavena, R., Swallow, J., & Debrue, M. (2012). Peritoneal sarcomatosis associated with telemetry implants in Sprague Dawley CD rats. Toxicologic Pathology, 40, 113–121.

    Article  PubMed  Google Scholar 

  • Short, B. G. (2008). Safety evaluation of ocular drug delivery formulations: Techniques and practical considerations. Toxicologic Pathology, 36, 49–62. https://doi.org/10.1177/0192623307310955.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, R. F., Abraham, J. R., & Butany, J. (2009). Bioprosthetic heart valves: Modes of failure. Histopathology, 55, 135–144. https://doi.org/10.1111/j.1365-2559.2008.03190.x.

    Article  PubMed  Google Scholar 

  • Signorello, L. B., et al. (2001). Nationwide study of cancer risk among hip replacement patients in Sweden. Journal of the National Cancer Institute, 93, 1405–1410.

    Article  CAS  PubMed  Google Scholar 

  • Socarrás TO, Vasconcelos, A. C., Campos, P. P., Pereira, N. B., Souza, J. P. C., & Andrade, S. P. (2014). Foreign body response to subcutaneous implants in diabetic rats. PLoS One, 9, e110945. https://doi.org/10.1371/journal.pone.0110945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto‐Miranda, M. A., Suami, H., & Chang, D. W. (2013). Mapping superficial lymphatic territories in the rabbit. The Anatomical Record, 296, 965–970.

    Google Scholar 

  • Stiers, P. J., van Gastel, N., Moermans, K., Stockmans, I., & Carmeliet, G. (2018). An ectopic imaging window for Intravital imaging of engineered bone tissue. JBMR Plus, 2, 92–102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stokes, K. (2009). The biocompatibility and biostability of new cardiovascular materials and devices. In Implantable neural prostheses 2 (pp. 1–26). New York: Springer.

    Google Scholar 

  • Suami, H., Yamashita, S., Soto-Miranda, M. A., & Chang, D. W. (2013). Lymphatic territories (lymphosomes) in a canine: an animal model for investigation of postoperative lymphatic alterations. PLOS ONE, 8:e69222.

    Google Scholar 

  • Suami, H., & Scaglioni, M. F. (2017). Lymphatic territories (lymphosomes) in the rat: an anatomical study for future lymphatic research. Plastic and reconstructive surgery, 140, 945–951.

    Google Scholar 

  • Sun, H., Mei, L., Song, C., Cui, X., & Wang, P. (2006). The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials, 27, 1735–1740. https://doi.org/10.1016/j.biomaterials.2005.09.019.

    Article  CAS  PubMed  Google Scholar 

  • Sunderman, F. W., Jr. (1989). Carcinogenicity of metal alloys in orthopedic prostheses: Clinical and experimental studies. Toxicological Sciences, 13, 205–216.

    Article  CAS  Google Scholar 

  • Szebeni, J. (2012). Hemocompatibility testing for nanomedicines and biologicals: Predictive assays for complement mediated infusion reactions. European Journal of Nanomedicine, 4, 33–53.

    Article  CAS  Google Scholar 

  • Szeto, G. L., & Lavik, E. B. (2016). Materials design at the interface of nanoparticles and innate immunity. Journal of materials chemistry B, Materials for Biology and Medicine, 4, 1610–1618. https://doi.org/10.1039/C5TB01825K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tellez, A., Dillon, K. N., & Rousselle, S. D. (2017). Comprehensive preclinical postmortem evaluation of valvular prosthesis. Toxicologic Pathology, 45, 1077–1090. https://doi.org/10.1177/0192623317740325.

    Article  PubMed  Google Scholar 

  • Tempel-Brami, C., Schiffenbauer, Y. S., Nyska, A., Ezov, N., Spector, I., Abramovitch, R., & Maronpot, R. R. (2015). Practical applications of in vivo and ex vivo MRI in toxicologic pathology using a novel high-performance compact MRI system. Toxicologic Pathology, 43, 633–650.

    Article  PubMed  Google Scholar 

  • Teo, Z. W. W., & Schalock, P. C. (2016). Hypersensitivity reactions to implanted metal devices: Facts and fictions. Journal of Investigational Allergology & Clinical Immunology, 26, 279–294. https://doi.org/10.18176/jiaci.0095.

    Article  CAS  Google Scholar 

  • Thackaberry, E. A., et al. (2017). Evaluation of the toxicity of Intravitreally injected PLGA microspheres and rods in monkeys and rabbits: Effects of depot size on inflammatory response. Investigative Ophthalmology & Visual Science, 58, 4274–4285.

    Article  CAS  Google Scholar 

  • The Organisation for Economic Co-operation and Development (2015) General questions and answers concerning OECD principles of Good Laboratory Practice (GLP) and Mutual Acceptance of Data (MAD). European Commission. https://www.oecd.org/env/ehs/testing/good-laboratory-practiceglp.htm. Accessed 30 May 2017.

  • Thevenot, P., Hu, W., & Tang, L. (2008). Surface chemistry influence implant biocompatibility. Current Topics in Medicinal Chemistry, 8, 270–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson, L., et al. (2013). Best practices for veterinary toxicologic clinical pathology, with emphasis on the pharmaceutical and biotechnology industries. Veterinary Clinical Pathology, 42, 252–269. https://doi.org/10.1111/vcp.12059.

    Article  PubMed  Google Scholar 

  • Tuan, R. S., Lee, F. Y.-I., Konttinen, Y., Wilkinson, J. M., & Smith, R. L. (2008). What are the local and systemic biological reactions and mediators to wear debris and what host factors determine or modulate the biological response to wear particles? The Journal of the American Academy of Orthopaedic Surgeons, 16, S42–S48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuomari, D. L., et al. (2007). Society of toxicologic pathology position paper on pathology image data: Compliance with 21 CFR Parts 58 and 11. Toxicologic Pathology, 35, 450–455.

    Article  PubMed  Google Scholar 

  • U.S. Food & Drug Administration. (2015). General considerations for animal studies for medical devices. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM466358.pdf. Accessed 25 Aug 2018 2017.

  • U.S. Food & Drug Administration. (2016). Use of International Standard ISO 10993-1, “Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process” U.S. Department of Health & Human Services. http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-meddev-gen/documents/document/ucm348890.pdf. Accessed 23 Oct 2016.

  • Van Der Giessen, W. J., et al. (1996). Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation, 94, 1690–1697.

    Article  PubMed  Google Scholar 

  • Varela, A., & Jolette, J. (2018). Bone toolbox: Biomarkers, imaging tools, biomechanics, and histomorphometry. Toxicologic Pathology, 46, 511–529. https://doi.org/10.1177/0192623318779565.

    Article  CAS  PubMed  Google Scholar 

  • Veerachamy, S., Yarlagadda, T., Manivasagam, G., & Yarlagadda, P. K. (2014). Bacterial adherence and biofilm formation on medical implants: A review. Proceedings of the Institution of Mechanical Engineers. Part H, 228, 1083–1099.

    Article  Google Scholar 

  • Vegas, A. J., et al. (2016). Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nature Biotechnology, 34, 345–352. https://doi.org/10.1038/nbt.3462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veiseh, O., et al. (2015). Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nature Materials, 14, 643–651. https://doi.org/10.1038/nmat4290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veleirinho, B., et al. (2014). Foreign body reaction associated with PET and PET/chitosan electrospun nanofibrous abdominal meshes. PLoS One, 9, e95293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Visuri, T., Pukkala, E., Paavolainen, P., Pulkkinen, P., & Riska, E. B. (1996). Cancer risk after metal on metal and polyethylene on metal total hip arthroplasty. Clinical Orthopaedics and Related Research, 329, S280–S289.

    Article  Google Scholar 

  • Von Eiff, C., Jansen, B., Kohnen, W., & Becker, K. (2005). Infections associated with medical devices. Drugs, 65, 179–214.

    Article  Google Scholar 

  • Wagenfuhr-Junior, J., Ribas Filho, J. M., Nascimento, M. M., Ribas, F. M., Wanka, M. V., & Godoi Ade, L. (2012). Histopathological reaction over prosthesis surface covered with silicone and polyurethane foam implanted in rats. Acta Cirúrgica Brasileira, 27, 866–873.

    Article  PubMed  Google Scholar 

  • Walch, A., Rauser, S., Deininger, S.-O., & Höfler, H. (2008). MALDI imaging mass spectrometry for direct tissue analysis: A new frontier for molecular histology. Histochemistry and Cell Biology, 130, 421–434. https://doi.org/10.1007/s00418-008-0469-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wancket, L. M. (2019). Regional draining lymph nodes: considerations for medical device studies. Toxicologic Pathology, 47, 339–343.

    Article  PubMed  Google Scholar 

  • Ward, J. M., & Thoolen, B. (2011). Grading of lesions. Toxicologic Pathology, 39, 745–746. https://doi.org/10.1177/0192623311408622.

    Article  PubMed  Google Scholar 

  • Wawrzynski, J., Gil, J. A., Goodman, A. D., & Waryasz, G. R. (2017). Hypersensitivity to orthopedic implants: A review of the literature. Rheumatology and Therapy, 4, 45–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsing, R. T., van Tienen, T. G., Ramrattan, N., Heijkants, R., Schouten, A. J., Veth, R. P., & Buma, P. (2008). Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant a 2-year follow-up study in dogs. American Journal of Sports Medicine, 36, 1978–1989.

    Article  PubMed  Google Scholar 

  • Weyhe, D., Cobb, W., Lecuivre, J., Alves, A., Ladet, S., Lomanto, D., & Bayon, Y. (2015). Large pore size and controlled mesh elongation are relevant predictors for mesh integration quality and low shrinkage–systematic analysis of key parameters of meshes in a novel minipig hernia model. International Journal of Surgery, 22, 46–53.

    Article  PubMed  Google Scholar 

  • Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29, 2941–2953.

    Article  CAS  PubMed  Google Scholar 

  • Williams, D. F. (2014). There is no such thing as a biocompatible material. Biomaterials, 35, 10009–10014.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, G. J., et al. (2009). Comparison of inflammatory response after implantation of sirolimus- and paclitaxel-eluting stents in porcine coronary arteries. Circulation, 120, 141–149. https://doi.org/10.1161/circulationaha.107.730010.

    Article  CAS  PubMed  Google Scholar 

  • Witzleb, W.-C., Ziegler, J., Krummenauer, F., Neumeister, V., & Guenther, K.-P. (2006). Exposure to chromium, cobalt and molybdenum from metal-on-metal total hip replacement and hip resurfacing arthroplasty. Acta Orthopaedica, 77, 697–705.

    Article  PubMed  Google Scholar 

  • Wolf, M. F., & Andwraon, J. M. (2012). Practical approach to blood compatibility assessments: General considerations and standards. In J.-P. Boutrand (Ed.), Biocompatibility and performance of medical devices (pp. 159–206). Philadelphia: Woodhead Publishing. https://doi.org/10.1533/9780857096456.2.159.

    Chapter  Google Scholar 

  • Wolf, M. T., Vodovotz, Y., Tottey, S., Brown, B. N., & Badylak, S. F. (2014). Predicting in vivo responses to biomaterials via combined in vitro and in silico analysis. Tissue Engineering. Part C, Methods, 21, 148–159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wood, N. K., Kaminski, E. J., & Oglesby, R. J. (1970). The significance of implant shape in experimental testing of biological materials: Disc vs. rod. Journal of Biomedical Materials Research, 4, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Woodward, S. C., Brewer, P., Moatamed, F., Schindler, A., & Pitt, C. (1985). The intracellular degradation of poly (ε-caprolactone). Journal of Biomedical Materials Research, 19, 437–444.

    Article  CAS  PubMed  Google Scholar 

  • Xie, D., Leng, Y. X., Jing, F. J., & Huang, N. (2015). A brief review of bio-tribology in cardiovascular devices. Biosurface and Biotribology, 1, 249–262. https://doi.org/10.1016/j.bsbt.2015.11.002.

    Article  Google Scholar 

  • Yang, Z., Yuan, H., Tong, W., Zou, P., Chen, W., & Zhang, X. (1996). Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: Variability among different kinds of animals. Biomaterials, 17, 2131–2137.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Niu, G., Lu, G., & Chen, X. (2011). Preclinical lymphatic imaging. Molecular Imaging and Biology, 13, 599–612.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, S., Pinholt, E. M., Madsen, J. E., & Donath, K. (2000). Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats. Journal of Cranio-Maxillo-Facial Surgery, 28, 116–122.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JoAnn C. L. Schuh CL, DVM, PhD, DACVP .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuh, J.C.L. (2019). Pathology and Histopathology Evaluations of Biomaterials and Medical Devices. In: Integrated Safety and Risk Assessment for Medical Devices and Combination Products. Springer, Cham. https://doi.org/10.1007/978-3-030-35241-7_9

Download citation

Publish with us

Policies and ethics