Skip to main content

Gene-Environment Interaction and Individual Susceptibility to Metabolic Disorders

  • Chapter
  • First Online:
Beyond Our Genes

Abstract

Genetic and environmental interactions are important for the development of metabolic disorders such as obesity, hypertension, hyperlipidemia and type 2 diabetes (T2D). It is well-established that environmental factors have a major impact on obesity and to some degree on T2D. This chapter focuses on the genetic causes of obesity and T2D, and the potential interactions with environmental and behavioral factors which may contribute to the ongoing increase in these diagnoses. Research in the last decades have demonstrated that while genetic variations explain a substantial proportion of the heritability, known genetic risk loci can only explain a minor fraction of the inter-individual variations in the two conditions. At present, the benefits of genetic risk scores are therefore limited, at least for interventions aimed against common forms of obesity and T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collaboration NCDRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016 Apr 2;387(10026):1377–1396.

    Google Scholar 

  2. Organization WH. Global report on diabetes WHO 2016. 2016.

    Google Scholar 

  3. Ebrahim S, Kinra S, Bowen L, Andersen E, Ben-Shlomo Y, Lyngdoh T, et al. The effect of rural-to-urban migration on obesity and diabetes in India: a cross-sectional study. PLoS Med. 2010 Apr 27;7(4):e1000268.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 2018 Mar;6(3):223–36.

    Article  CAS  PubMed  Google Scholar 

  5. Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat Genet. 2017 Oct;49(10):1458–67.

    Article  CAS  PubMed  Google Scholar 

  6. Stefan N, Haring HU, Hu FB, Schulze MB. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 2013 Oct;1(2):152–62.

    Article  PubMed  Google Scholar 

  7. Schellenberg ES, Dryden DM, Vandermeer B, Ha C, Korownyk C. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013 Oct 15;159(8):543–51.

    Article  PubMed  Google Scholar 

  8. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G, et al. The response to long-term overfeeding in identical twins. N Engl J Med. 1990 May 24;322(21):1477–82.

    Article  CAS  PubMed  Google Scholar 

  9. Mustelin L, Silventoinen K, Pietilainen K, Rissanen A, Kaprio J. Physical activity reduces the influence of genetic effects on BMI and waist circumference: a study in young adult twins. Int J Obes. 2009 Jan;33(1):29–36.

    Article  CAS  Google Scholar 

  10. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997 Jul;27(4):325–51.

    Article  CAS  PubMed  Google Scholar 

  11. Silventoinen K, Jelenkovic A, Sund R, Yokoyama Y, Hur YM, Cozen W, et al. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region: an individual-based pooled analysis of 40 twin cohorts. Am J Clin Nutr. 2017 Aug;106(2):457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeo GSH. Genetics of obesity: can an old dog teach us new tricks? Diabetologia. 2017 May;60(5):778–83.

    Article  CAS  PubMed  Google Scholar 

  13. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007 May 11;316(5826):889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007 Nov 30;318(5855):1469–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stratigopoulos G, Burnett LC, Rausch R, Gill R, Penn DB, Skowronski AA, et al. Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J Clin Invest. 2016 May 2;126(5):1897–910.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte Browning in humans. N Engl J Med. 2015 Sep 3;373(10):895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Magi R, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015 Feb 12;518(7538):187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Replication DIG, Meta-analysis C. Asian genetic epidemiology network type 2 diabetes C, south Asian type 2 diabetes C, Mexican American type 2 diabetes C, type 2 diabetes genetic exploration by Nex-generation sequencing in muylti-ethnic samples C, et al. genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014 Mar;46(3):234–44.

    Article  CAS  Google Scholar 

  19. Langenberg C, Lotta LA. Genomic insights into the causes of type 2 diabetes. Lancet. 2018 Jun 16;391(10138):2463–74.

    Article  CAS  PubMed  Google Scholar 

  20. Scott RA, Scott LJ, Magi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. 2017 Nov;66(11):2888–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Flannick J, Johansson S, Njolstad PR. Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes. Nat Rev Endocrinol. 2016 Jul;12(7):394–406.

    Article  CAS  PubMed  Google Scholar 

  22. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012 Sep;44(9):981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Renstrom E. Impact of transcription factor 7-like 2 (TCF7L2) on pancreatic islet function and morphology in mice and men. Diabetologia. 2012 Oct;55(10):2559–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, et al. The diabetes gene and Wnt pathway effector TCF7L2 regulates adipocyte development and function. Diabetes. 2018 Apr;67(4):554–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jin T. Current understanding on role of the Wnt signaling pathway effector TCF7L2 in glucose homeostasis. Endocr Rev. 2016 Jun;37(3):254–77.

    Article  CAS  PubMed  Google Scholar 

  26. Walter S, Mejia-Guevara I, Estrada K, Liu SY, Glymour MM. Association of a Genetic Risk Score with Body Mass Index across Different Birth Cohorts. JAMA. 2016 Jul 5;316(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  27. Rosenquist JN, Lehrer SF, O’Malley AJ, Zaslavsky AM, Smoller JW, Christakis NA. Cohort of birth modifies the association between FTO genotype and BMI. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):354–9.

    Article  CAS  PubMed  Google Scholar 

  28. Stutzmann F, Tan K, Vatin V, Dina C, Jouret B, Tichet J, et al. Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in multigenerational pedigrees. Diabetes. 2008 Sep;57(9):2511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tyrrell J, Wood AR, Ames RM, Yaghootkar H, Beaumont RN, Jones SE, et al. Gene-obesogenic environment interactions in the UK biobank study. Int J Epidemiol. 2017 Apr 1;46(2):559–75.

    PubMed  PubMed Central  Google Scholar 

  30. Nettleton JA, Follis JL, Ngwa JS, Smith CE, Ahmad S, Tanaka T, et al. Gene x dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry. Hum Mol Genet. 2015 Aug 15;24(16):4728–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rukh G, Ericson U, Andersson-Assarsson J, Orho-Melander M, Sonestedt E. Dietary starch intake modifies the relation between copy number variation in the salivary amylase gene and BMI. Am J Clin Nutr. 2017 Jul;106(1):256–62.

    Article  CAS  PubMed  Google Scholar 

  32. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ. 2014 Mar 19;348:g1610.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qi Q, Kilpelainen TO, Downer MK, Tanaka T, Smith CE, Sluijs I, et al. FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals. Hum Mol Genet. 2014 Dec 20;23(25):6961–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi Q, Downer MK, Kilpelainen TO, Taal HR, Barton SJ, Ntalla I, et al. Dietary intake, FTO genetic variants, and adiposity: a combined analysis of over 16,000 children and adolescents. Diabetes. 2015 Jul;64(7):2467–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health. 2007 Apr;97(4):667–75.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, et al. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med. 2012 Oct 11;367(15):1387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rask-Andersen M, Karlsson T, Ek WE, Johansson A. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLoS Genet. 2017 Sep;13(9):e1006977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Young AI, Wauthier F, Donnelly P. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nat Commun. 2016 Sep 6;7:12724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. de Lauzon-Guillain B, Clifton EA, Day FR, Clement K, Brage S, Forouhi NG, et al. Mediation and modification of genetic susceptibility to obesity by eating behaviors. Am J Clin Nutr. 2017 Oct;106(4):996–1004.

    Article  PubMed  CAS  Google Scholar 

  40. Kilpelainen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011 Nov;8(11):e1001116.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li S, Zhao JH, Luan J, Ekelund U, Luben RN, Khaw KT, et al. Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Med. 2010 Aug 31;7(8):e1000332.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Papandonatos GD, Pan Q, Pajewski NM, Delahanty LM, Peter I, Erar B, et al. Genetic predisposition to weight loss and regain with lifestyle intervention: analyses from the diabetes prevention program and the look AHEAD randomized controlled trials. Diabetes. 2015 Dec;64(12):4312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Livingstone KM, Celis-Morales C, Papandonatos GD, Erar B, Florez JC, Jablonski KA, et al. FTO genotype and weight loss: systematic review and meta-analysis of 9563 individual participant data from eight randomised controlled trials. BMJ. 2016 Sep 20;i4707:354.

    Google Scholar 

  44. Aubin HJ, Farley A, Lycett D, Lahmek P, Aveyard P. Weight gain in smokers after quitting cigarettes: meta-analysis. BMJ. 2012 Jul 10;345:e4439.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Justice AE, Winkler TW, Feitosa MF, Graff M, Fisher VA, Young K, et al. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat Commun. 2017 Apr 26;8:14977.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008 May;31(5):619–26.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schmid SM, Hallschmid M, Schultes B. The metabolic burden of sleep loss. Lancet Diabetes Endocrinol. 2015 Jan;3(1):52–62.

    Article  CAS  PubMed  Google Scholar 

  48. Jones SE, Tyrrell J, Wood AR, Beaumont RN, Ruth KS, Tuke MA, et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 2016 Aug;12(8):e1006125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Salas-Salvado J, Bullo M, Babio N, Martinez-Gonzalez MA, Ibarrola-Jurado N, Basora J, et al. Reduction in the incidence of type 2 diabetes with the mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011 Jan;34(1):14–9.

    Article  PubMed  Google Scholar 

  50. Qi L, Cornelis MC, Zhang C, van Dam RM. Hu FB. Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. Am J Clin Nutr. 2009 May;89(5):1453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Langenberg C, Sharp SJ, Franks PW, Scott RA, Deloukas P, Forouhi NG, et al. Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study. PLoS Med. 2014 May;11(5):e1001647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Li SX, Imamura F, Ye Z, Schulze MB, Zheng J, Ardanaz E, et al. Interaction between genes and macronutrient intake on the risk of developing type 2 diabetes: systematic review and findings from European prospective investigation into Cancer (EPIC)-InterAct. Am J Clin Nutr. 2017 Jul;106(1):263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. InterAct C. Investigation of gene-diet interactions in the incretin system and risk of type 2 diabetes: the EPIC-InterAct study. Diabetologia. 2016 Dec;59(12):2613–21.

    Article  CAS  Google Scholar 

  54. Klimentidis YC, Chen Z, Arora A, Hsu CH. Association of physical activity with lower type 2 diabetes incidence is weaker among individuals at high genetic risk. Diabetologia. 2014 Dec;57(12):2530–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hivert MF, Jablonski KA, Perreault L, Saxena R, McAteer JB, Franks PW, et al. Updated genetic score based on 34 confirmed type 2 diabetes loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011 Apr;60(4):1340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018 May;6(5):361–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Dahlman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahlman, I., Rydén, M. (2020). Gene-Environment Interaction and Individual Susceptibility to Metabolic Disorders. In: Teperino, R. (eds) Beyond Our Genes. Springer, Cham. https://doi.org/10.1007/978-3-030-35213-4_5

Download citation

Publish with us

Policies and ethics