Skip to main content

MEG Methods: A Primer of Basic MEG Analysis

  • Chapter
  • First Online:
Neuroimaging in Schizophrenia

Abstract

Methods for analysis of magnetoencephalography (MEG) data are diverse in their implementation, but traditionally involve inverse modeling of brain activity from data acquired at the sensors. Preprocessing methods vary depending on the specific type of MEG data acquired, but normally involve filtering/removal of noise signals from the data, and may also require the co-registration of coordinate spaces between MEG head positioning systems and structural data. Depending on the variables to be compared, analysis of MEG data can range from simple to complex, and computational demand for data analysis can be minor or substantial. Processing and analysis may include things such as stimulus averaging, time-frequency analysis, source analysis, or a combination thereof. Analyses can be restricted to the cortex or allowed to span the brain volume, and can be focused to predefined regions of interest or examined across all sensors/brain areas. In this chapter, we review basic MEG analysis methods, beginning with preprocessing and closing with source-level MEG analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7:1129–59.

    Article  CAS  Google Scholar 

  • Belouchrani A, Cichocki A. Robust whitening procedure in blind source separation context. Electron Lett. 2000;36:2050–1.

    Article  Google Scholar 

  • Brazier M. A study of the electrical fields at the surface of the head. Electroencephalogr Clin Neurophysiol. 1949;2:38–52.

    Google Scholar 

  • Cardoso JF, Donoho DL. Some experiments on independent component analysis of non-Gaussian processes. Presented at the Higher-Order Statistics, 1999. Proceedings of the IEEE Signal Processing Workshop on, IEEE, 1999; pp. 74–77.

    Google Scholar 

  • Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science. 1968;161:784–6.

    Article  CAS  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys. 1993;65:413–97. https://doi.org/10.1103/RevModPhys.65.413.

    Article  Google Scholar 

  • Harris FJ. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE. 1987;66:51–83.

    Article  Google Scholar 

  • Ilmoniemi R, Williamson S. Analysis for the magnetic alpha rhythm in signal space. Presented at the Society for Neuroscience. Abstract, 1987; p. 46.

    Google Scholar 

  • Jousmaki V, Hari R. Cardiac artifacts in magnetoencephalogram. J Clin Neurophysiol. 1996;13:172–6.

    Article  CAS  Google Scholar 

  • Jung T-P, Makeig S, Humphries C, Lee T-W, Mckeown MJ, Iragui V, Sejnowski TJ. Removing electroencephalographic artifacts by blind source separation. Psychophysiology. 2000;37:163–78.

    Article  CAS  Google Scholar 

  • Lounasmaa OV. Multi-SQUID systems for measurements of cerebral magnetic fields. Phys Scr. 1989; 273.

    Google Scholar 

  • Mangan AP, Whitaker RT. Partitioning 3D surface meshes using watershed segmentation. IEEE Trans Vis Comput Graph. 1999;5:308–21.

    Article  Google Scholar 

  • Maris E, Oostenveld R. Nonparametric statistical testing of EEG-and MEG-data. J Neurosci Methods. 2007;164:177–90.

    Article  Google Scholar 

  • Medvedovsky M, Taulu S, Bikmullina R, Paetau R. Artifact and head movement compensation in MEG. Neurol Neurophysiol Neurosci. 2007;4

    Google Scholar 

  • Mosher J, Leahy R, Lewis P. EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng. 1999;46:245–59. https://doi.org/10.1109/10.748978.

    Article  CAS  PubMed  Google Scholar 

  • Percival DB, Walden AT. Spectral analysis for physical applications. Cambridge: Cambridge University Press; 1993.

    Book  Google Scholar 

  • Petsche H, Pockberger H, Rappelsberger P. On the search for the sources of the electroencephalogram. Neuroscience. 1984;11:1–27.

    Article  CAS  Google Scholar 

  • Plonsey R, Heppner DB. Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys. 1967;29:657–64.. https://doi.org/10.1007/BF02476917

    Article  CAS  Google Scholar 

  • Simons FJ, Dahlen F, Wieczorek MA. Spatiospectral concentration on a sphere. SIAM Rev. 2006;48:504–36.

    Article  Google Scholar 

  • Stolk A, Todorovic A, Schoffelen J-M, Oostenveld R. Online and offline tools for head movement compensation in MEG. NeuroImage. 2013;68:39–48. https://doi.org/10.1016/j.neuroimage.2012.11.047.

    Article  PubMed  Google Scholar 

  • Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 2006;51:1759.

    Article  CAS  Google Scholar 

  • Taulu S, Kajola M, Simola J. Suppression of interference and artifacts by the signal space separation method. Brain Topogr. 2004;16:269–75.

    Article  Google Scholar 

  • Taulu S, Simola J, Kajola M. Applications of the signal space separation method. IEEE Trans Signal Process. 2005;53:3359–72.

    Article  Google Scholar 

  • Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O. Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol. 1995;95:189–200.

    Article  CAS  Google Scholar 

  • Uusitalo MA, Ilmoniemi RJ. Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput. 1997;35:135–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean F. Salisbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coffman, B.A., Salisbury, D.F. (2020). MEG Methods: A Primer of Basic MEG Analysis. In: Kubicki, M., Shenton, M. (eds) Neuroimaging in Schizophrenia . Springer, Cham. https://doi.org/10.1007/978-3-030-35206-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35206-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35205-9

  • Online ISBN: 978-3-030-35206-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics