Skip to main content

Grasping Unknown Objects by Exploiting Complementarity with Robot Hand Geometry

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11754))

Included in the following conference series:

Abstract

Grasping unknown objects with multi-fingered hands is challenging due to incomplete information regarding scene geometry and the complicated control and planning of robot hands. We propose a method for grasping unknown objects with multi-fingered hands based on shape complementarity between the robot hand and the object. Taking as input a point cloud of the scene we locally perform shape completion and then we search for hand poses and finger configurations that optimize a local shape complementarity metric. We validate the proposed approach in MuJoCo physics engine. Our experiments show that the explicit consideration of shape complementarity of the hand leads to robust grasping of unknown objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 1, pp. 348–353. IEEE (2000)

    Google Scholar 

  2. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis: a survey. IEEE Trans. Robot. 30(2), 1–21 (2013). https://doi.org/10.1109/TRO.2013.2289018

    Article  Google Scholar 

  3. Ciocarlie, M., Goldfeder, C., Allen, P.: Dexterous grasping via eigengrasps: a low-dimensional approach to a high-complexity problem. In: Robotics: Science and Systems Manipulation Workshop-Sensing and Adapting to the Real World. Citeseer (2007)

    Google Scholar 

  4. Eppner, C., Brock, O.: Grasping unknown objects by exploiting shape adaptability and environmental constraints. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4000–4006 (2013). https://doi.org/10.1109/IROS.2013.6696928

  5. Fan, Y., Tang, T., Lin, H.C., Tomizuka, M.: Real-time grasp planning for multi-fingered hands by finger splitting. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4045–4052. IEEE (2018)

    Google Scholar 

  6. Goldfeder, C., Allen, P.K., Lackner, C., Pelossof, R.: Grasp planning via decomposition trees (2007)

    Google Scholar 

  7. Gualtieri, M., Pas, A.T., Saenko, K., Platt, R.: High precision grasp pose detection in dense clutter. In: IEEE International Conference on Intelligent Robots and Systems, November 2016, pp. 598–605 (2016). https://doi.org/10.1109/IROS.2016.7759114

  8. Jiang, Y., Moseson, S., Saxena, A.: Efficient grasping from RGBD images: learning using a new rectangle representation. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 3304–3311 (2011). https://doi.org/10.1109/ICRA.2011.5980145

  9. Jiang, Y., Moseson, S., Saxena, A.: Efficient grasping from RGBD images: learning using a new rectangle representation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3304–3311. IEEE (2011)

    Google Scholar 

  10. Kappler, D., Bohg, J., Schaal, S.: Leveraging big data for grasp planning. In: Proceedings - IEEE International Conference on Robotics and Automation, June 2015, pp. 4304–4311 (2015). https://doi.org/10.1109/ICRA.2015.7139793

  11. Kasper, A., Xue, Z., Dillmann, R.: The KIT object models database: an object model database for object recognition, localization and manipulation in service robotics (2012). https://doi.org/10.1177/0278364912445831

    Article  Google Scholar 

  12. Le, Q.V., Kamm, D., Kara, A.F., Ng, A.Y.: Learning to grasp objects with multiple contact points. In: 2010 IEEE International Conference on Robotics and Automation, pp. 5062–5069. IEEE (2010)

    Google Scholar 

  13. Lei, Q., Meijer, J., Wisse, M.: Fast C-shape grasping for unknown objects. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 509–516 (2017). https://doi.org/10.1109/AIM.2017.8014068

  14. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps (2013). https://doi.org/10.1177/0278364914549607. http://arxiv.org/abs/1301.3592

    Article  Google Scholar 

  15. Mahler, J., et al.: Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics (2017). https://doi.org/10.15607/RSS.2017.XIII.058. http://arxiv.org/abs/1703.09312

  16. Miller, A.T., Knoop, S., Christensen, H.I., Allen, P.K.: Automatic grasp planning using shape primitives (2003)

    Google Scholar 

  17. Redmon, J., Angelova, A.: Real-time grasp detection using convolutional neural networks, pp. 1316–1322 (2015). https://doi.org/10.1109/ICRA.2015.7139361

  18. Sahbani, A., El-Khoury, S., Bidaud, P.: An overview of 3D object grasp synthesis algorithms. Robot. Auton. Syst. 60(3), 326–336 (2012). https://doi.org/10.1016/j.robot.2011.07.016

    Article  Google Scholar 

  19. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. Int. J. Robot. Res. 27(2), 157–173 (2008)

    Article  Google Scholar 

  20. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-540-30301-5

    Book  MATH  Google Scholar 

  21. Yang, B., Rosa, S., Markham, A., Trigoni, N., Wen, H.: 3D object dense reconstruction from a single depth view. In: ICCV, pp. 679–688 (2017). https://doi.org/10.1109/ICCVW.2017.86. http://arxiv.org/abs/1802.00411

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Kiatos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiatos, M., Malassiotis, S. (2019). Grasping Unknown Objects by Exploiting Complementarity with Robot Hand Geometry. In: Tzovaras, D., Giakoumis, D., Vincze, M., Argyros, A. (eds) Computer Vision Systems. ICVS 2019. Lecture Notes in Computer Science(), vol 11754. Springer, Cham. https://doi.org/10.1007/978-3-030-34995-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34995-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34994-3

  • Online ISBN: 978-3-030-34995-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics