Skip to main content

Numerical Solution of Generalized Minimax Problems

  • Chapter
  • First Online:
Numerical Nonsmooth Optimization

Abstract

This contribution contains the description and investigation of three numerical methods for solving generalized minimax problems. These problems consists in the minimization of nonsmooth functions which are compositions of special smooth convex functions with maxima of smooth functions. The most important functions of this type are the sums of maxima of smooth functions. Section 11.2 is devoted to primal interior point methods which use solutions of nonlinear equations for obtaining minimax vectors. Section 11.3 contains investigation of smoothing methods, based on using exponential smoothing terms. Section 11.4 contains short description of primal-dual interior point methods based on transformation of generalized minimax problems to general nonlinear programming problems. Finally the last section contains results of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  2. Björck, A.: Numerical Methods in Matrix Computations. Springer, New York (2015)

    Book  Google Scholar 

  3. Bunch, J.R., Parlett, B.N.: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8, 639–655 (1971)

    Article  MathSciNet  Google Scholar 

  4. Coleman, T.F., Moré, J.J.: Estimation of sparse Hessian matrices and graph coloring problems. Math. Program. 28, 243–270 (1984)

    Article  MathSciNet  Google Scholar 

  5. Di Pillo, G., Grippo, L., Lucidi, S.: Smooth Transformation of the generalized minimax problem. J. Optim. Theory Appl. 95, 1–24 (1997)

    Article  MathSciNet  Google Scholar 

  6. Duff, I.S., Gould, N.I.M., Reid, J.K., Turner, K.: The factorization of sparse symmetric indefinite metrices. IMA J. Numer. Anal. 11, 181–204 (1991)

    Article  MathSciNet  Google Scholar 

  7. Fiedler, M.: Special Matrices and Their Applications in Numerical Mathematics. Dover, New York (2008)

    MATH  Google Scholar 

  8. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (1987)

    MATH  Google Scholar 

  9. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–269 (2002)

    Article  MathSciNet  Google Scholar 

  10. Gill, P.E., Murray, W.: Newton type methods for unconstrained and linearly constrained optimization. Math. Program. 7, 311–350 (1974)

    Article  MathSciNet  Google Scholar 

  11. Gould, N.I.M., Toint, P.L.: Nonlinear programming without a penalty function or a filter. Math. Program. 122, 155–196 (2010)

    Article  MathSciNet  Google Scholar 

  12. Griewank, A., Toint, P.L.: Partitioned variable metric updates for large-scale structured optimization problems. Numer. Math. 39, 119–137 (1982)

    Article  MathSciNet  Google Scholar 

  13. Griewank, A., Walther, A.: Evaluating Derivatives. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  14. Le, D.: Three new rapidly convergent algorithms for finding a zero of a function. SIAM J. Sci. Stat. Comput. 6, 193–208 (1985)

    Article  MathSciNet  Google Scholar 

  15. Le, D.: An efficient derivative-free method for solving nonlinear equations. ACM Trans. Math. Softw. 11, 250–262 (1985)

    Article  MathSciNet  Google Scholar 

  16. Liu, X., Yuan, Y.: A sequential quadratic programming method without a penalty function or a filter for nonlinear equality constrained optimization. SIAM J. Optim. 21, 545–571 (2011)

    Article  MathSciNet  Google Scholar 

  17. Lukšan, L., Spedicato, E.: Variable metric methods for unconstrained optimization and nonlinear least squares. J. Comput. Appl. Math. 124, 61–93 (2000)

    Article  MathSciNet  Google Scholar 

  18. Lukšan, L., Vlček, J.: Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming problems. Numer. Linear Algebra Appl. 5, 219–247 (1998)

    Article  MathSciNet  Google Scholar 

  19. Lukšan, L., Vlček, J.: Sparse and partially separable test problems for unconstrained and equality constrained optimization. Technical Report V-767, Prague, ICS AS CR (1998)

    Google Scholar 

  20. Lukšan, L., Matonoha, C., Vlček, J.: Interior-point method for non-linear non-convex optimization. Numer. Linear Algebra Appl. 11, 431–453 (2004)

    Article  MathSciNet  Google Scholar 

  21. Lukšan, L., Matonoha, C., Vlček, J.: Interior-point method for large-scale nonlinear programming. Optim. Methods Softw. 20, 569–582 (2005)

    Article  MathSciNet  Google Scholar 

  22. Lukšan, L., Matonoha, C., Vlček, J.: Primal interior-point method for large sparse minimax optimization. Kybernetika 45, 841–864 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Lukšan, L., Matonoha, C., Vlček, J.: Primal interior-point method for minimization of generalized minimax functions. Kybernetika 46, 697–721 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Lukšan, L., Tůma, M., Matonoha, C., Vlček, J., Ramešová, N., Šiška, M., Hartman, J.: UFO 2017. Interactive System for Universal Functional Optimization. Technical Report V-1252, Prague, ICS AS CR (2017)

    Google Scholar 

  25. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization. World Scientific, London (1992)

    Book  Google Scholar 

  26. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  27. Tůma, M.: A note on direct methods for approximations of sparse Hessian matrices. Appl. Math. 33, 171–176 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Vanderbei, J., Shanno, D.F.: An interior point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)

    Article  MathSciNet  Google Scholar 

  29. Wächter, A., Biegler, L.: Line search filter methods for nonlinear programming. Motivation and global convergence. SIAM J. Comput. 16, 1–31 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Lukšan .

Editor information

Editors and Affiliations

Appendix

Appendix

Algorithm 11.1: Primal interior point method

________________________

Data::

A tolerance for the gradient norm of the Lagrange function \( \underline {\varepsilon } > 0\). A precision for determination of a minimax vector \( \underline {\delta } > 0\). Bounds for a barrier parameter \(0 < \underline {\mu } < \overline {\mu }\). Coefficients for decrease of a barrier parameter 0 < λ < 1, σ > 1 (or 0 < 𝜗 < 1). A tolerance for a uniform descent ε 0 > 0. A tolerance for a step length selection ε 1 > 0. A maximum step length \(\overline {\varDelta } > 0\).

Input.:

A sparsity pattern of the matrix A(x) = [A 1(x), …, A m(x)]. A starting point \({\boldsymbol x} \in \mathbb {R}^n\).

Step 1.:

(Initiation) Choose \(\mu \leq \overline {\mu }\). Determine a sparse structure of the matrix W = W(x;μ) from the sparse structure of the matrix A(x) and perform a symbolic decomposition of the matrix W (described in [2, Section 1.7.4]). Compute values f kl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ m k, values \(F_k({\boldsymbol x}) = \max _{1 \leq l \leq m_k} f_{kl}({\boldsymbol x})\), 1 ≤ k ≤ m, and the value of objective function (11.4). Set r = 0 (restart indicator).

Step 2.:

(Termination) Solve nonlinear equations (11.44) with precision \( \underline {\delta }\) to obtain a minimax vector z(x;μ) and a vector of Lagrange multipliers u(x;μ). Determine a matrix A = A(x) and a vector g = g(x;μ) = A(x)u(x;μ). If \(\mu \leq \underline {\mu }\) and \(\|{\boldsymbol g}\| \leq \underline {\varepsilon }\), terminate the computation.

Step 3.:

(Hessian matrix approximation) Set G = G(x;μ) or compute an approximation G of the Hessian matrix G(x;μ) using gradient differences or using quasi-Newton updates (Remark 11.13).

Step 4.:

(Direction determination) Determine a matrix \(\nabla ^2 \hat {B}({\boldsymbol x}; \mu )\) by (11.48) and a vector Δx by solving Eq. (11.49) with the right-hand side defined by (11.47).

Step 5.:

(Restart) If r = 0 and (11.54) does not hold, set G = I, r = 1 and go to Step 4. If r = 1 and (11.54) does not hold, set Δx = −g. Set r = 0.

Step 6.:

(Step length selection) Determine a step length α > 0 satisfying inequalities (11.55) (for a barrier function \(\hat {B}({\boldsymbol x}; \mu )\) defined by (11.46)) and \(\alpha \leq \overline {\varDelta }/\|\varDelta {\boldsymbol x}\|\). Note that nonlinear equations (11.44) are solved at the point x + αΔx. Set x := x + αΔx. Compute values f kl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ m k, values \(F_k({\boldsymbol x}) = \max _{1 \leq l \leq m_k} f_{kl}({\boldsymbol x})\), 1 ≤ k ≤ m, and the value of objective function (11.4).

Step 7.:

(Barrier parameter update) Determine a new value of a barrier parameter \(\mu \geq \underline {\mu }\) using Procedure A or Procedure B. Go to Step 2.

The values \( \underline {\varepsilon } = 10^{-6}\), \( \underline {\delta } = 10^{-6}\), \( \underline {\mu } = 10^{-8}\), \(\overline {\mu } = 1\), λ = 0.85, σ = 100, 𝜗 = 0.1, ε 0 = 10−8, ε 1 = 10−4, and \(\overline {\varDelta } = 1000\) were used in our numerical experiments.

Algorithm 11.2: Smoothing method

________________________________

Data::

A tolerance for the gradient norm of the smoothing function \( \underline {\varepsilon } > 0\). Bounds for a smoothing parameter \(0 < \underline {\mu } < \overline {\mu }\). Coefficients for decrease of a smoothing parameter 0 < λ < 1, σ > 1 (or 0 < 𝜗 < 1). A tolerance for a uniform descent ε 0 > 0. A tolerance for a step length selection ε 1 > 0. A maximum step length \(\overline {\varDelta } > 0\).

Input.:

A sparsity pattern of the matrix A(x) = [A 1(x), …, A m(x)]. A starting point \({\boldsymbol x} \in \mathbb {R}^n\).

Step 1.:

(Initiation) Choose \(\mu \leq \overline {\mu }\). Determine a sparse structure of the matrix W = W(x;μ) from the sparse structure of the matrix A(x) and perform a symbolic decomposition of the matrix W (described in [2, Section 1.7.4]). Compute values f kl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ m k, values \(F_k({\boldsymbol x}) = \max _{1 \leq l \leq m_k} f_{kl}({\boldsymbol x})\), 1 ≤ k ≤ m, and the value of objective function (11.4). Set r = 0 (restart indicator).

Step 2.:

(Termination) Determine a vector of smoothing multipliers u(x;μ) by (11.87). Determine a matrix A = A(x) and a vector g = g(x;μ) = A(x)u(x;μ). If \(\mu \leq \underline {\mu }\) and \(\|{\boldsymbol g}\| \leq \underline {\varepsilon }\), terminate the computation.

Step 3.:

(Hessian matrix approximation) Set G = G(x;μ) or compute an approximation G of the Hessian matrix G(x;μ) using gradient differences or using quasi-Newton updates (Remark 11.13).

Step 4.:

(Direction determination) Determine the matrix W by (11.94) and the vector Δx by (11.93) using the Gill–Murray decomposition of the matrix W.

Step 5.:

(Restart) If r = 0 and (11.54) does not hold, set G = I, r = 1 and go to Step 4. If r = 1 and (11.54) does not hold, set Δx = −g. Set r = 0.

Step 6.:

(Step length selection) Determine a step length α > 0 satisfying inequalities (11.55) (for a smoothing function S(x;μ)) and \(\alpha = \overline {\varDelta }/\|\varDelta {\boldsymbol x}\|\). Set x := x + αΔx. Compute values f kl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ m k, values \(F_k({\boldsymbol x}) = \max _{1 \leq l \leq m_k} f_{kl}({\boldsymbol x})\), 1 ≤ k ≤ m, and the value of the objective function (11.4).

Step 7.:

(Smoothing parameter update) Determine a new value of the smoothing parameter \(\mu \geq \underline {\mu }\) using Procedure A or Procedure B. Go to Step 2.

The values \( \underline {\varepsilon } = 10^{-6}\), \( \underline {\mu } = 10^{-6}\), \(\overline {\mu } = 1\), λ = 0.85, σ = 100, 𝜗 = 0.1, ε 0 = 10−8, ε 1 = 10−4, and \(\overline {\varDelta } = 1000\) were used in our numerical experiments.

Algorithm 11.3: Primal-dual interior point method

___________________

Data::

A tolerance for the gradient norm \( \underline {\varepsilon } > 0\). A parameter for determination of active constraints \(\tilde {\varepsilon } > 0\). A parameter for initiation of slack variables and Lagrange multipliers δ > 0. An initial value of the barrier parameter \(\overline {\mu } > 0\). A precision for the direction determination 0 ≤ ω < 1. A parameter for the step length selection 0 < γ < 1. A tolerance for the step length selection ε 1 > 0. Maximum step length \(\overline {\varDelta } > 0\).

Input.:

A sparsity pattern of the matrix A(x) = [A 1(x), …, A m(x)]. A starting point \({\boldsymbol x} \in \mathbb {R}^n\).

Step 1.:

(Initialization) Compute values f kl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ m k, and set \(F_k({\boldsymbol x}) = \max _{1 \leq l \leq m_k} f_{kl}({\boldsymbol x})\), z k = F k(x) + δ, 1 ≤ k ≤ m. Compute values \(c_{kl}(\tilde {{\boldsymbol x}}) = f_{kl}({\boldsymbol x}) - z_k\), and set \(s_{kl} = -c_{kl}(\tilde {{\boldsymbol x}})\), u kl = δ. Set \(\mu = \overline {\mu }\) and compute the value of the barrier function \(\tilde {B}_{\mu }(\tilde {{\boldsymbol x}},{\boldsymbol s})\).

Step 2.:

(Termination) Determine a matrix \(\tilde {A}(\tilde {{\boldsymbol x}})\) and a vector \(\tilde {{\boldsymbol g}}(\tilde {{\boldsymbol x}},{\boldsymbol u}) = \tilde {A}(\tilde {{\boldsymbol x}}) {\boldsymbol u}\) by (11.111). If the KKT conditions \(\|\tilde {{\boldsymbol g}}(\tilde {{\boldsymbol x}},{\boldsymbol u})\| \leq \underline {\varepsilon }\), \(\|{\boldsymbol c}(\tilde {{\boldsymbol x}}) + {\boldsymbol s}\| \leq \underline {\varepsilon }\), and \({\boldsymbol s}^T {\boldsymbol u} \leq \underline {\varepsilon }\) are satisfied, terminate the computation.

Step 3.:

(Hessian matrix approximation) Set G = G(x, u) or compute an approximation G of the Hessian matrix G(x, u) using gradient differences or utilizing quasi-Newton updates (Remark 11.13). Determine a parameter σ ≥ 0 by (11.121) or set σ = 0. Split the constraints into active if \(\hat {s}_{kl} \leq \tilde {\varepsilon } \hat {u}_{kl}\) and inactive if \(\check {s}_{kl} > \tilde {\varepsilon } \check {u}_{kl}\).

Step 4.:

(Direction determination) Determine the matrix \(\tilde {G} = \tilde {G}(\tilde {{\boldsymbol x}},{\boldsymbol u})\) by (11.111) (where the Hessian matrix G(x, u) is replaced with its approximation G). Determine vectors \(\varDelta \tilde {{\boldsymbol x}}\) and \(\varDelta \hat {{\boldsymbol u}}\) by solving linear system (11.115), a vector \(\varDelta \check {{\boldsymbol u}}\) by (11.114), and a vector Δs by (11.116). Linear system (11.115) is solved either directly using the Bunch–Parlett decomposition (we carry out both the symbolic and the numeric decompositions in this step) or iteratively by the conjugate gradient method with indefinite preconditioner (11.123). Compute the derivative of the augmented Lagrange function by formula (11.120).

Step 5.:

(Restart) If P′(0) ≥ 0, determine a diagonal matrix \(\tilde {D}\) by (11.124), set \(\tilde {G} = \tilde {D}\), σ = 0, and go to Step 4.

Step 6.:

(Step length selection) Determine a step length parameter α > 0 satisfying inequalities P(α) − P(0) ≤ ε 1αP′(0) and \(\alpha \leq \overline {\varDelta }/\|\varDelta {\boldsymbol x}\|\). Determine new vectors \(\tilde {{\boldsymbol x}} := \tilde {{\boldsymbol x}} + \alpha \varDelta \tilde {{\boldsymbol x}}\), s := s(α), u := u(α) by (11.117). Compute values f kl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ m k, and set \(c_{kl}(\tilde {{\boldsymbol x}}) = f_{kl}({\boldsymbol x}) - z_k\), 1 ≤ k ≤ m, 1 ≤ l ≤ m k. Compute the value of the barrier function \(\tilde {B}_{\mu }(\tilde {{\boldsymbol x}},{\boldsymbol s})\).

Step 7.:

(Barrier parameter update) Determine a new value of the barrier parameter \(\mu \geq \underline {\mu }\) using Procedure C. Go to Step 2.

The values \( \underline {\varepsilon } = 10^{-6}\), \(\tilde {\varepsilon } = 0.1\), δ = 0.1, ω = 0.9, γ = 0.99, \(\overline {\mu } = 1\), ε 1 = 10−4, and \(\overline {\varDelta } = 1000\) were used in our numerical experiments.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lukšan, L., Matonoha, C., Vlček, J. (2020). Numerical Solution of Generalized Minimax Problems. In: Bagirov, A., Gaudioso, M., Karmitsa, N., Mäkelä, M., Taheri, S. (eds) Numerical Nonsmooth Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-34910-3_11

Download citation

Publish with us

Policies and ethics